Внедрение OpenCV 3 KNN

Как вы, возможно, знаете, многое изменилось в OpenCV 3. В предыдущей версии OpenCV я делал это следующим образом:

Mat trainData(classes * samples, ImageSize, CV_32FC1);
Mat trainClasses(classes * samples, 1, CV_32FC1);
KNNLearning(&trainData, &trainClasses); //learning function
KNearest knearest(trainData, trainClasses); //creating

//loading input image
Mat input = imread("input.jpg");

//digital recognition
learningTest(input, knearest);//test

Также я нашел пример, как это выяснить, но у меня все еще есть ошибки в функции создания:

Ptr<KNearest> knearestKdt = KNearest::create(ml::KNearest::Params(10, true, INT_MAX, ml::KNearest::KDTREE));
knearestKdt->train(trainData, ml::ROW_SAMPLE, trainLabels);
knearestKdt->findNearest(testData, 4, bestLabels);

Не могли бы вы предоставить мне информацию, как правильно переписать реальный код KNearest в openCV 3?

5

Решение

API снова изменился после ответа @ aperture-laboratories. Я надеюсь, что они будут идти в ногу с документацией, когда они выпустят новые функции или изменения в будущем.

Рабочий пример выглядит следующим образом

using namespace cv::ml;

//Be sure to change number_of_... to fit your data!
Mat matTrainFeatures(0,number_of_train_elements,CV_32F);
Mat matSample(0,number_of_sample_elements,CV_32F);

Mat matTrainLabels(0,number_of_train_elements,CV_32F);
Mat matSampleLabels(0,number_of_sample_elements,CV_32F);

Mat matResults(0,0,CV_32F);

//etcetera code for loading data into Mat variables suppressed

Ptr<TrainData> trainingData;
Ptr<KNearest> kclassifier=KNearest::create();

trainingData=TrainData::create(matTrainFeatures,
SampleTypes::ROW_SAMPLE,matTrainLabels);kclassifier->setIsClassifier(true);
kclassifier->setAlgorithmType(KNearest::Types::BRUTE_FORCE);
kclassifier->setDefaultK(1);

kclassifier->train(trainingData);
kclassifier->findNearest(matSample,kclassifier->getDefaultK(),matResults);

//Just checking the settings
cout<<"Training data: "<<endl
<<"getNSamples\t"<<trainingData->getNSamples()<<endl
<<"getSamples\n"<<trainingData->getSamples()<<endl
<<endl;

cout<<"Classifier :"<<endl
<<"kclassifier->getDefaultK(): "<<kclassifier->getDefaultK()<<endl
<<"kclassifier->getIsClassifier()   : "<<kclassifier->getIsClassifier()<<endl
<<"kclassifier->getAlgorithmType(): "<<kclassifier->getAlgorithmType()<<endl
<<endl;

//confirming sample order
cout<<"matSample: "<<endl
<<matSample<<endl
<<endl;

//displaying the results
cout<<"matResults: "<<endl
<<matResults<<endl
<<endl;

//etcetera ending for main function
7

Другие решения

KNearest::Params params;
params.defaultK=5;
params.isclassifier=true;
//////// Train and find with knearest
Ptr<TrainData> knn;
knn= TrainData::create(AmatOfFeatures,ROW_SAMPLE,AmatOfLabels);
Ptr<KNearest> knn1;
knn1=StatModel::train<KNearest>(knn,params);
knn1->findNearest(AmatOfFeaturesToTest,4,ResultMatOfNearestNeighbours);
/////////////////

Названия этих функций помогут вам найти их в документации.
Тем не менее, документация может быть немного запутанной, пока она не будет полностью обновлена, поэтому лучший способ сделать именно то, что вы хотите, — это сделать небольшой пример с игрушкой и использовать метод проб и ошибок.
Это за работой Например, вставил прямо из моего собственного кода, который, как оказалось, работает. Надеюсь, это поможет.

0

По вопросам рекламы [email protected]