У меня есть серверная программа на C ++ Boost ASIO, и я хотел бы иметь возможность установить исходный IP-адрес, используемый TCP, на адрес другого сервера. Я знаю, что можно прочитать IP-адреса источника и назначения, но предположительно они также могут быть установлены?
Предположительно, если я установлю «неправильный» IP-адрес источника в коде C ++, произойдет некоторое взаимодействие с сетевым стеком. Не будет ли сетевой стек переустанавливать исходный IP-адрес при выходе, даже если код C ++ правильный? Правильный ли способ сделать это, чтобы написать C ++ ASIO-код для выбора конкретного виртуального сетевого интерфейса? Тот, который настроен с «неправильным» статическим IP-адресом? Я видел это раньше как способ управления IP-адресом источника. Это то, что мне нужно сделать вместо этого?
Мне интересно, каковы будут последствия этого. Наличие двух машин с одинаковым статическим IP-адресом может привести к тому, что «обычный» сервер полностью перестанет работать, что может быть плохо.
У меня есть порты Windows и Linux моего сервера, которые я могу использовать в случае, если предложенный код будет работать на одной ОС, а не на другой. В настоящее время я склоняюсь к Kali Linux, так как могу «взломать» главный сервер и эффективно отключить его на некоторое время.
Можно установить исходный IP-адрес на произвольный адрес исходящих данных, вручную создав заголовки как сетевого, так и транспортного уровня, а затем отправив заголовки и желаемую полезную нагрузку на сырая розетка. Использование необработанных сокетов может потребовать повышенных разрешений или может быть отключено или ограничено ядром, например в некоторых Microsoft платформы. Кроме того, из-за трехстороннего рукопожатия TCP и непредсказуемых порядковых номеров эффективность поддельного сегмента TCP вне потенциальной Атаки сброса TCP, сомнительно
Маршрутизация — это отдельная тема, которая зависит от различных маршрутизаторов и конфигураций. Например, устройства могут выполнять выходную фильтрацию и отбрасывать пакеты с адресом источника, для которого устройство не может проверить. Кроме того, последствия конфликта IP-адресов могут различаться, но часто это приводит к прерывистому соединению.
Boost.Asio обеспечивает basic_raw_socket<Protocol>
шаблон, который ожидает тип, соответствующий протокол Типовое требование. Например, ниже — начало или raw
протокол:
struct raw
{
typedef boost::asio::ip::basic_endpoint<raw> endpoint;
int type() const { return SOCK_RAW; }
int protocol() const { return IPPROTO_RAW; }
int family() const { return PF_INET; }
};
boost::asio::basic_raw_socket<raw> socket;
При работе с необработанными сокетами сложность заключается не в том, чтобы использовать Boost.Asio, а в том, чтобы реализовать протокол проводной сети и транспорта. Ниже приведен полный минимальный пример, где я постарался сделать его максимально простым, создав raw
протокол и использование basic_raw_socket
отправить сообщение UDP:
#include <algorithm>
#include <iostream>
#include <boost/array.hpp>
#include <boost/asio.hpp>
#include <boost/cstdint.hpp>
/// @brief raw socket provides the protocol for raw socket.
class raw
{
public:
///@brief The type of a raw endpoint.
typedef boost::asio::ip::basic_endpoint<raw> endpoint;
///@brief The raw socket type.
typedef boost::asio::basic_raw_socket<raw> socket;
///@brief The raw resolver type.
typedef boost::asio::ip::basic_resolver<raw> resolver;
///@brief Construct to represent the IPv4 RAW protocol.
static raw v4()
{
return raw(IPPROTO_RAW, PF_INET);
}
///@brief Construct to represent the IPv6 RAW protocol.
static raw v6()
{
return raw(IPPROTO_RAW, PF_INET6);
}
///@brief Default constructor.
explicit raw()
: protocol_(IPPROTO_RAW),
family_(PF_INET)
{}
///@brief Obtain an identifier for the type of the protocol.
int type() const
{
return SOCK_RAW;
}
///@brief Obtain an identifier for the protocol.
int protocol() const
{
return protocol_;
}
///@brief Obtain an identifier for the protocol family.
int family() const
{
return family_;
}
///@brief Compare two protocols for equality.
friend bool operator==(const raw& p1, const raw& p2)
{
return p1.protocol_ == p2.protocol_ && p1.family_ == p2.family_;
}
/// Compare two protocols for inequality.
friend bool operator!=(const raw& p1, const raw& p2)
{
return !(p1 == p2);
}
private:
explicit raw(int protocol_id, int protocol_family)
: protocol_(protocol_id),
family_(protocol_family)
{}
int protocol_;
int family_;
};
///@ brief Mockup ipv4_header for with no options.
//
// IPv4 wire format:
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-------+-------+-------+-------+-------+-------+-------+------+ ---
// |version|header | type of | total length in bytes | ^
// | (4) | length| service | | |
// +-------+-------+-------+-------+-------+-------+-------+------+ |
// | identification |flags| fragment offset | |
// +-------+-------+-------+-------+-------+-------+-------+------+ 20 bytes
// | time to live | protocol | header checksum | |
// +-------+-------+-------+-------+-------+-------+-------+------+ |
// | source IPv4 address | |
// +-------+-------+-------+-------+-------+-------+-------+------+ |
// | destination IPv4 address | v
// +-------+-------+-------+-------+-------+-------+-------+------+ ---
// / options (if any) /
// +-------+-------+-------+-------+-------+-------+-------+------+
class ipv4_header
{
public:
ipv4_header() { std::fill(buffer_.begin(), buffer_.end(), 0); }
void version(boost::uint8_t value) {
buffer_[0] = (value << 4) | (buffer_[0] & 0x0F);
}
void header_length(boost::uint8_t value)
{
buffer_[0] = (value & 0x0F) | (buffer_[0] & 0xF0);
}
void type_of_service(boost::uint8_t value) { buffer_[1] = value; }
void total_length(boost::uint16_t value) { encode16(2, value); }
void identification(boost::uint16_t value) { encode16(4, value); }
void dont_fragment(bool value)
{
buffer_[6] ^= (-value ^ buffer_[6]) & 0x40;
}
void more_fragments(bool value)
{
buffer_[6] ^= (-value ^ buffer_[6]) & 0x20;
}
void fragment_offset(boost::uint16_t value)
{
// Preserve flags.
auto flags = static_cast<uint16_t>(buffer_[6] & 0xE0) << 8;
encode16(6, (value & 0x1FFF) | flags);
}
void time_to_live(boost::uint8_t value) { buffer_[8] = value; }
void protocol(boost::uint8_t value) { buffer_[9] = value; }
void checksum(boost::uint16_t value) { encode16(10, value); }
void source_address(boost::asio::ip::address_v4 value)
{
auto bytes = value.to_bytes();
std::copy(bytes.begin(), bytes.end(), &buffer_[12]);
}
void destination_address(boost::asio::ip::address_v4 value)
{
auto bytes = value.to_bytes();
std::copy(bytes.begin(), bytes.end(), &buffer_[16]);
}
public:
std::size_t size() const { return buffer_.size(); }
const boost::array<uint8_t, 20>& data() const { return buffer_; }
private:
void encode16(boost::uint8_t index, boost::uint16_t value)
{
buffer_[index] = (value >> 8) & 0xFF;
buffer_[index + 1] = value & 0xFF;
}
boost::array<uint8_t, 20> buffer_;
};
void calculate_checksum(ipv4_header& header)
{
// Zero out the checksum.
header.checksum(0);
// Checksum is the 16-bit one's complement of the one's complement sum of
// all 16-bit words in the header.
// Sum all 16-bit words.
auto data = header.data();
auto sum = std::accumulate<boost::uint16_t*, boost::uint32_t>(
reinterpret_cast<boost::uint16_t*>(&data[0]),
reinterpret_cast<boost::uint16_t*>(&data[0] + data.size()),
0);
// Fold 32-bit into 16-bits.
while (sum >> 16)
{
sum = (sum & 0xFFFF) + (sum >> 16);
}
header.checksum(~sum);
}
///@brief Mockup IPv4 UDP header.
//
// UDP wire format:
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-------+-------+-------+-------+-------+-------+-------+------+ ---
// | source port | destination port | ^
// +-------+-------+-------+-------+-------+-------+-------+------+ 8 bytes
// | length | checksum | v
// +-------+-------+-------+-------+-------+-------+-------+------+ ---
// / data (if any) /
// +-------+-------+-------+-------+-------+-------+-------+------+
class udp_header
{
public:
udp_header() { std::fill(buffer_.begin(), buffer_.end(), 0); }
void source_port(boost::uint16_t value) { encode16(0, value); }
void destination_port(boost::uint16_t value) { encode16(2, value); }
void length(boost::uint16_t value) { encode16(4, value); }
void checksum(boost::uint16_t value) { encode16(6, value); }
public:
std::size_t size() const { return buffer_.size(); }
const boost::array<uint8_t, 8>& data() const { return buffer_; }
private:
void encode16(boost::uint8_t index, boost::uint16_t value)
{
buffer_[index] = (value >> 8) & 0xFF;
buffer_[index + 1] = value & 0xFF;
}
boost::array<uint8_t, 8> buffer_;
};int main()
{
boost::asio::io_service io_service;
// Create all I/O objects.
boost::asio::ip::udp::socket receiver(io_service,
boost::asio::ip::udp::endpoint(boost::asio::ip::udp::v4(), 0));
boost::asio::basic_raw_socket<raw> sender(io_service,
raw::endpoint(raw::v4(), 0));
const auto receiver_endpoint = receiver.local_endpoint();
// Craft a UDP message with a payload 'hello' coming from
// 8.8.8.8:54321
const boost::asio::ip::udp::endpoint spoofed_endpoint(
boost::asio::ip::address_v4::from_string("8.8.8.8"),
54321);
const std::string payload = "hello";
// Create the UDP header.
udp_header udp;
udp.source_port(spoofed_endpoint.port());
udp.destination_port(receiver_endpoint.port());
udp.length(udp.size() + payload.size()); // Header + Payload
udp.checksum(0); // Optioanl for IPv4
// Create the IPv4 header.
ipv4_header ip;
ip.version(4); // IPv4
ip.header_length(ip.size() / 4); // 32-bit words
ip.type_of_service(0); // Differentiated service code point
auto total_length = ip.size() + udp.size() + payload.size();
ip.total_length(total_length); // Entire message.
ip.identification(0);
ip.dont_fragment(true);
ip.more_fragments(false);
ip.fragment_offset(0);
ip.time_to_live(4);
ip.source_address(spoofed_endpoint.address().to_v4());
ip.destination_address(receiver_endpoint.address().to_v4());
ip.protocol(IPPROTO_UDP);
calculate_checksum(ip);
// Gather up all the buffers and send through the raw socket.
boost::array<boost::asio::const_buffer, 3> buffers = {{
boost::asio::buffer(ip.data()),
boost::asio::buffer(udp.data()),
boost::asio::buffer(payload)
}};
auto bytes_transferred = sender.send_to(buffers,
raw::endpoint(receiver_endpoint.address(), receiver_endpoint.port()));
assert(bytes_transferred == total_length);
// Read on the reciever.
std::vector<char> buffer(payload.size(), '\0');
boost::asio::ip::udp::endpoint sender_endpoint;
bytes_transferred = receiver.receive_from(
boost::asio::buffer(buffer), sender_endpoint);
// Verify.
assert(bytes_transferred == payload.size());
assert(std::string(buffer.begin(), buffer.end()) == payload);
assert(spoofed_endpoint == sender_endpoint);
// Print endpoints.
std::cout <<
"Actual sender endpoint: " << sender.local_endpoint() << "\n""Receiver endpoint: " << receiver.local_endpoint() << "\n""Receiver's remote endpoint: " << sender_endpoint << std::endl;
}
Выход:
$ sudo ./a.out
Actual sender endpoint: 0.0.0.0:255
Receiver endpoint: 0.0.0.0:44806
Receiver's remote endpoint: 8.8.8.8:54321
Как указано в выходных данных, хотя конечная точка отправителя 0.0.0.0:255
получатель считает, что конечная точка отправителя 8.8.8.8:54321
,
использование bind
вызов, чтобы назначить исходный IP-адрес и порт.
Если вы не звоните bind
до connect
ОС выбирает и связывает интерфейс для вас, используя таблицу маршрутизации.
IP-адрес должен быть адресом одного из интерфейсов вашего хоста. Другими словами, вы не можете подделать ваш исходный IP, используя bind
вызов.