Я создаю простую процедуру умножения матриц, работающую на архитектуре Intel Xeon Phi.
После многих попыток автовекторизации, чтобы добиться лучших результатов, мне пришлось использовать Intel Intrinsics.
До сих пор размер матрицы задавался #define в исходном коде, но когда я пытаюсь дать его во время выполнения, у меня огромное снижение производительности.
Исходный код следующий:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <stddef.h>
#include <chrono>
#include <ctime>
#include <mmintrin.h>
#include <xmmintrin.h> // SSE
#include <pmmintrin.h> // SSE2
#include <emmintrin.h> // SSE3
#include <immintrin.h>
#include <zmmintrin.h>
#define ALIGNMENT 64
#ifndef SIZE
#define SIZE 960
#endif
#define vZero(c) {(c) = _mm512_setzero_pd();}
#define start_time() \
auto start = std::chrono::high_resolution_clock::now();
/** Shows the elapsed time. See start_time for usage*/
#define elapsed_time(STRING) \
auto elapsed = std::chrono::high_resolution_clock::now() - start; \
long long microseconds = std::chrono::duration_cast<std::chrono::microseconds>(elapsed).count(); \
printf(#STRING":%lld\n", microseconds);
void recTranspose(double *__restrict__ a, double *__restrict__ aT, const int n, const int k, const int lda, const int ldat){
if (n*k <= 128) {
for(int i = 0; i < n; i++) {
for(int j = 0; j < k; j++) {
aT[j*ldat+i] = a[i*lda+j];
}
}
//printf("Reached _|_");
return;
}
if(k > n) {
recTranspose(a, aT, n, (k+1)/2, lda, ldat);
recTranspose(&a[(k+1)/2], &aT[(k+1)/2*ldat], n, k-((k+1)/2), lda, ldat);
} else {
recTranspose(a, aT, (n+1)/2, k, lda, ldat);
recTranspose(&a[(n+1)/2*lda], &aT[(n+1)/2], n- (n+1)/2, k, lda, ldat);
}
}
/** Calculates 8 cols and 30 rows of c.*/
inline void eightbythirty(double *__restrict__ a, double *__restrict__ b, double * __restrict__ c, const int size) {
__m512d c0, c1, c2, c3, c4, c5, c6, c7, c8, c9;
__m512d c10, c11, c12, c13, c14, c15, c16, c17, c18, c19;
__m512d c20, c21, c22, c23, c24, c25, c26, c27, c28, c29;vZero(c0); vZero(c1); vZero(c2); vZero(c3); vZero(c4); vZero(c5);
vZero(c6); vZero(c7); vZero(c8); vZero(c9); vZero(c10); vZero(c11);
vZero(c12); vZero(c13); vZero(c14); vZero(c15); vZero(c16); vZero(c17);
vZero(c18); vZero(c19); vZero(c20); vZero(c21); vZero(c22); vZero(c23);
vZero(c24); vZero(c25); vZero(c26); vZero(c27); vZero(c28); vZero(c29);
__assume_aligned(a, ALIGNMENT);
__assume_aligned(b, ALIGNMENT);
__assume_aligned(c, ALIGNMENT);
__assume(size%16==0);
for(int i = 0; i < size; i++) {
const __m512d bv = _mm512_load_pd(b+i*size);
c0 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+0, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c0);
c1 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+1, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c1);
c2 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+2, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c2);
c3 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+3, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c3);
c4 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+4, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c4);
c5 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+5, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c5);
c6 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+6, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c6);
c7 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+7, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c7);
c8 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+8, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c8);
c9 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+9, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c9);
c10 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+10, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0),bv, c10);
c11 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+11, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0),bv, c11);
c12 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+12, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c12);
c13 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+13, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c13);
c14 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+14, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c14);
c15 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+15, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c15);
c16 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+16, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c16);
c17 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+17, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c17);
c18 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+18, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c18);
c19 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+19, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c19);
c20 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+20, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c20);
c21 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+21, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c21);
c22 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+22, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c22);
c23 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+23, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c23);
c24 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+24, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c24);
c25 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+25, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c25);
c26 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+26, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c26);
c27 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+27, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c27);
c28 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+28, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c28);
c29 = _mm512_fmadd_pd(_mm512_extload_pd(a+i*size+29, _MM_UPCONV_PD_NONE, _MM_BROADCAST_1X8, 0), bv, c29);
}
_mm512_storenr_pd(c+0*size, c0);
_mm512_storenr_pd(c+1*size, c1);
_mm512_storenr_pd(c+2*size, c2);
_mm512_storenr_pd(c+3*size, c3);
_mm512_storenr_pd(c+4*size, c4);
_mm512_storenr_pd(c+5*size, c5);
_mm512_storenr_pd(c+6*size, c6);
_mm512_storenr_pd(c+7*size, c7);
_mm512_storenr_pd(c+8*size, c8);
_mm512_storenr_pd(c+9*size, c9);
_mm512_storenr_pd(c+10*size, c10);
_mm512_storenr_pd(c+11*size, c11);
_mm512_storenr_pd(c+12*size, c12);
_mm512_storenr_pd(c+13*size, c13);
_mm512_storenr_pd(c+14*size, c14);
_mm512_storenr_pd(c+15*size, c15);
_mm512_storenr_pd(c+16*size, c16);
_mm512_storenr_pd(c+17*size, c17);
_mm512_storenr_pd(c+18*size, c18);
_mm512_storenr_pd(c+19*size, c19);
_mm512_storenr_pd(c+20*size, c20);
_mm512_storenr_pd(c+21*size, c21);
_mm512_storenr_pd(c+22*size, c22);
_mm512_storenr_pd(c+23*size, c23);
_mm512_storenr_pd(c+24*size, c24);
_mm512_storenr_pd(c+25*size, c25);
_mm512_storenr_pd(c+26*size, c26);
_mm512_storenr_pd(c+27*size, c27);
_mm512_storenr_pd(c+28*size, c28);
_mm512_storenr_pd(c+29*size, c29);
}int main(int argc, const char ** argv) {
#ifdef SIZES
const int size = SIZE;
#else
const int size = atoi(argv[1]);
#endif
void* p = malloc((sizeof(double)*5*size*size) + ALIGNMENT-1);
double *__restrict__ a = (double*)(((size_t)p + ALIGNMENT-1) / ALIGNMENT * ALIGNMENT);
double *__restrict__ aT = (double*) a+size*size;
double *__restrict__ b = aT+size*size;
double *__restrict__ c = b+size*size;
double *__restrict__ d = c+size*size;
srand(time(NULL));
for(int i = 0; i < size; i++) {
for(int j = 0; j < size; j++) {
a[i*size+j] = (double) (rand()%20);
}
for(int j2=0; j2<size; j2++){
c[i*size+j2] = 0.0;
}
}
for(int i = 0; i < size; i++) {
for(int j = 0; j < size; j++) {
b[i*size+j] = (double) (rand()%20);
}
}start_time();
recTranspose(a, aT, size, size, size, size);
for(int i = 0; i < size; i+=30) {
for(int j = 0; j < size; j+=8) {
eightbythirty(&aT[i], &b[j], &c[i*size+j], size);
}
}
elapsed_time();
double gflops = 2.0*size*size*size*1.0e-03/(microseconds);
printf("Gflops: %f\n", gflops);
for(int i = 0; i < size; i++) {
for(int j = 0; j < size; j++) {
double s = 0;
for(int u = 0; u < size; u++) {
s += a[i*size+u] * b[u*size+j];
}
d[i*size+j] = s;
}
}
int error = 0;
for(int i = 0; i < size; i++) {
for(int j = 0; j < size; j++) {
if(abs(c[i*size+j] - d[i*size+j]) > 1) {
printf("Error at %d %d , %f instead of %f\n", i, j, c[i*size+j], d[i*size+j]);
error++;
if(error > 16) return 0;
}
}
}
printf("OK\n");
}
Например, размер 960 (на данный момент он работает только с размерами, кратными 30 * 8):
если я компилирую с заданным временем компиляции: icc -mmic -O3 -restrict -std = c ++ 11 -DSIZES -DSIZE = 960 mmul.cpp -o mmul.o
Истекшее время: 0.460745с
Gflops: 3.840458
если я скомпилирую с заданным размером среды выполнения: icc -mmic -O3 -restrict -std = c ++ 11 mmul.cpp -o mmul.o
Истекшее время: 2.204564 с
Gflops: 0,802640
Я думаю, что это может быть проблема предварительной загрузки с ICC, который не может распознать шаблон доступа к памяти. Глядя на сгенерированный источник asm, количество инструкций vprefetch намного больше в версии «время компиляции».
Забавный факт: проверка правильности результата умножения (два цикла for в конце кода, строки 178-197) намного медленнее в версии во время компиляции!
Какие-нибудь мысли? Я пробовал #pragma loop_count, но кажется, что это бесполезно, также ручная внутренняя предварительная выборка не кажется очень эффективной.
Заранее спасибо за любой ответ.
С Уважением,
Лука
Основная теорема информатики утверждает, что любая проблема может быть решена с помощью другого уровня косвенности.
Идея состоит в том, чтобы оставить свой код в виде циклов фиксированного размера и написать код для отправки в правильный цикл фиксированного размера.
Первая смена eightbythirty
читать так:
template<int size>
inline void eightbythirty(double *__restrict__ a, double *__restrict__ b, double * __restrict__ c) {
с ИДЕНТИЧНОЙ реализацией внутри. Вы могли бы положить это в namespace details
поскольку это не предназначено, чтобы быть обращенным к пользователю обычно.
Затем оберните это:
inline void eightbythirty(double *__restrict__ a, double *__restrict__ b, double * __restrict__ c, const int size_divided_by_240) {
int size=size_divided_by_240;
switch( size&7 ) {
case 0: break;
case 01: eightbythirty<01>(a,b,c); break;
case 02: eightbythirty<02>(a,b,c); break;
case 03: eightbythirty<03>(a,b,c); break;
case 04: eightbythirty<04>(a,b,c); break;
case 05: eightbythirty<05>(a,b,c); break;
case 06: eightbythirty<06>(a,b,c); break;
case 07: eightbythirty<07>(a,b,c); break;
}
a+=(size&7)*8*30;
b+=(size&7)*8*30;
c+=(size&7)*8*30;
switch( (size>>3)&7 ) {
case 0: break;
case 01: eightbythirty<1*8>(a,b,c); break;
case 02: eightbythirty<2*8>(a,b,c); break;
case 03: eightbythirty<3*8>(a,b,c); break;
case 04: eightbythirty<4*8>(a,b,c); break;
case 05: eightbythirty<5*8>(a,b,c); break;
case 06: eightbythirty<6*8>(a,b,c); break;
case 07: eightbythirty<7*8>(a,b,c); break;
}
a += (size&(7<<3))*8*30;
b += (size&(7<<3))*8*30;
c += (size&(7<<3))*8*30;
switch( (size>>6)&7 ) {
case 0: break;
case 01: eightbythirty<1*8*8>(a,b,c); break;
case 02: eightbythirty<2*8*8>(a,b,c); break;
case 03: eightbythirty<3*8*8>(a,b,c); break;
case 04: eightbythirty<4*8*8>(a,b,c); break;
case 05: eightbythirty<5*8*8>(a,b,c); break;
case 06: eightbythirty<6*8*8>(a,b,c); break;
case 07: eightbythirty<7*8*8>(a,b,c); break;
default:
}
a += (size&(7<<6))*8*30;
b += (size&(7<<6))*8*30;
c += (size&(7<<6))*8*30;
int steps = size/8/8/8;
for( int i = 0; i < steps; ++i ) {
eightbythirty<512>(a+512*i, b+512*i, c+512*i);
}
}
Это разбивает ваш входной размер на 3 бита. Затем он вызывает реализации фиксированного размера. В приведенном выше коде присутствуют 4 ветви, большинство из которых представляют собой простые таблицы переходов, для значений менее 512 * 8 * 30. Для значений, превышающих это, все делается в основном кусками 512 * 8 * 30.
7 * 3 + 1 = 22 реализации вашей исходной функции, каждая с константой size
Таким образом, компилятор может полностью оптимизировать их.
Обычно это можно сделать с помощью метапрограммирования, но оно не стоит одноразового использования.
Я могу пропустить некоторые *(8*30)
в приведенном выше коде, когда я вызываю <int size>
версия eightbythirty
,
Чтобы проверить, является ли это результатом оптимизации предварительной выборки, вы можете попробовать скомпилировать версию, в которой вы определяете размер с помощью:
icc -mmic -O3 -restrict -std=c++11 -no-opt-prefetch -DSIZES -DSIZE=960 mmul.cpp -o mmul.o
Это отключит вставки предварительной загрузки программного обеспечения. Это разумное предположение, поскольку знание размера набора данных позволит значительно эффективнее выполнять предварительную выборку.
Если ваша проблема заключается в предварительной загрузке, вы должны попробовать более агрессивный опция компилятора -неавтоматическая предвыборка = 4. Другая идея будет использовать #pragma prefetch. Увидеть Вот для получения дополнительной информации.
Вы также пробовали #pragma loop_count. Проверьте Вот.
Вы можете профилировать свой код с помощью vTune и проверить коэффициент попадания в кэш L1. Он должен быть очень высоким для умножения матрицы. Также убедитесь, что вы используете блокировку кэша.
Я бы также порекомендовал запустить ваш тест с использованием большого количества итераций. Это покроет разогрев кеша.
Еще одно предложение с моей стороны будет использовать математические библиотеки для этой задачи. Я вижу, что ваш код одноядерный, так что это приведет к производительности ~ 250 GFLOPS на всех ядрах. Это было бы около 25-30% эффективности, что не очень хорошо. Использование MKL даст гораздо более высокую эффективность.
Тем не менее, для образовательных целей, это упражнение в порядке.
Этот вопрос был также размещен на https://software.intel.com/en-us/forums/topic/534856. Ответы на software.intel.com получены от разных экспертов.