Я пытаюсь решить дифференциальное уравнение теплопроводности, используя алгоритм Томаса.
Физическая проблема: У нас есть штекер, температура на левой стороне 0
температура правой стороны 1
,
Для алгоритма Томаса я написал функцию, которая принимает три QVector
а также int
значение суммы уравнений.
Это мой код:
#include <QCoreApplication>
#include <QVector>
#include <QDebug>
#include <iostream>
using std::cin;
void enterIn(QVector<float> &Array, int Amount_of_elements){
int transit;
for(int i=0;i<Amount_of_elements;i++){
cin>>transit;
Array.push_back(transit);
}
}
QVector<float> shuttle_method(const QVector<float> &below_main_diagonal,
QVector<float> &main_diagonal,
const QVector<float> &beyond_main_diagonal,
const QVector<float> &free_term,
const int N){
QVector <float> c;
QVector <float> d;
for(int i=0;i<N;i++){
main_diagonal[i]*=(-1);
}
QVector<float> x; //result
c.push_back(beyond_main_diagonal[0]/main_diagonal[0]);
d.push_back(-free_term[0]/main_diagonal[0]);
for(int i=1;i<=N-2;i++){
c.push_back(beyond_main_diagonal[i]/(main_diagonal[i]-below_main_diagonal[i]*c[i-1]));
d.push_back( (below_main_diagonal[i]*d[i-1] - free_term[i]) / (main_diagonal[i]- below_main_diagonal[i]*c[i-1]) );
}
x.resize(N);
//qDebug()<<x.size()<<endl;
int n=N-1;
x[n]=(below_main_diagonal[n]*d[n-1]-free_term[n])/(main_diagonal[n]-below_main_diagonal[n]*c[n-1]);
for(int i=n-1;i>=0;i--){
x[i]=c[i]*x[i+1]+d[i];
// qDebug()<<x[i]<<endl;
}
return x;
}
int main()
{
QVector <float> alpha; // below
QVector <float> beta; // main diagonal * (-1)
QVector <float> gamma; // beyond
QVector <float> b; // free term
QVector<float> T;
int cells_x=40; //amount of equations
alpha.resize(cells_x);
beta.resize(cells_x);
gamma.resize(cells_x);
b.resize(cells_x);
T.resize(cells_x);
float dt=0.2,h=0.1;
alpha[0]=0;
for(int i=1;i<cells_x;i++){
alpha[i]= -dt/(h*h);
}
for(int i=0;i<cells_x;i++){
beta[i] = (2*dt)/(h*h)+1;
}
for(int i=0;i<cells_x-1;i++){
gamma[i]= -dt/(h*h);
}
gamma[cells_x-1]=0;
qDebug()<<"alpha= "<<endl<<alpha.size()<<alpha<<endl<<"beta = "<<endl<<beta.size()<<beta<<endl<<"gamma= "<<gamma.size()<<gamma<<endl;for(int i=0;i<cells_x-1;i++){
T[i]=0;
}
T[cells_x-1]=1;
qDebug()<<endl<<endl<<T<<endl;
//qDebug()<< shuttle_method(alpha,beta,gamma,b,N);
QVector<float> Tn;
Tn.resize(cells_x);
Tn = shuttle_method(alpha,beta,gamma,T,cells_x);
Tn[0]=0;Tn[cells_x-1]=1;
for(int stepTime = 0; stepTime < 50; stepTime++){
Tn = shuttle_method(alpha,beta,gamma,Tn,cells_x);
Tn[0]=0;
Tn[cells_x-1]=1;
qDebug()<<Tn<<endl;
}
return 0;
}
Моя проблема:
когда я компилирую и запускаю его, я получаю это:
Tn <20 items> QVector<float>
0 float
0.000425464 float
0.000664658 float
0.000937085 float
0.00125637 float
0.00163846 float
0.00210249 float
0.00267163 float
0.00337436 float
0.00424581 float
0.00532955 float
0.00667976 float
0.00836396 float
0.0104664 float
0.0130921 float
0.0163724 float
0.0204714 float
0.0255939 float
0.0319961 float
Tn <20 items> QVector<float>
0 float
-0.000425464 float
0.000643385 float
-0.000926707 float
0.00120951 float
-0.00161561 float
0.00202056 float
-0.00263167 float
0.00324078 float
-0.00418065 float
0.00511726 float
-0.00657621 float
0.00802998 float
-0.0103034 float
0.0125688 float
-0.0161171 float
0.0196527 float
-0.0251945 float
0.0307164 float
1 float
Tn <20 items> QVector<float>
0 float
0.000425464 float
0.000664658 float
0.000937085 float
0.00125637 float
0.00163846 float
0.00210249 float
0.00267163 float
0.00337436 float
0.00424581 float
0.00532955 float
0.00667976 float
0.00836396 float
0.0104664 float
0.0130921 float
0.0163724 float
0.0204714 float
0.0255939 float
0.0319961 float
Tn <20 items> QVector<float>
0 float
-0.000425464 float
0.000643385 float
-0.000926707 float
0.00120951 float
-0.00161561 float
0.00202056 float
-0.00263167 float
0.00324078 float
-0.00418065 float
0.00511726 float
-0.00657621 float
0.00802998 float
-0.0103034 float
0.0125688 float
-0.0161171 float
0.0196527 float
-0.0251945 float
0.0307164 float
1 float
Снова и снова в цикле.
Я понятия не имею, почему я получаю это.
Может быть, моя ошибка в назначении Tn
результат моего Thomas-метода-функции?
или в реализации метода Томаса? или в граничных условиях?
Я понял!
Граничные условия должны действовать на векторы
QVector<float> below_main_diagonal,
QVector<float> main_diagonal,
QVector<float> beyond_main_diagonal
так что T [0] должно быть 0, а T [N-1] должно быть 1. Мы можем сделать это следующим образом:
main_diagonal.first()=1;
main_diagonal.last()=1;
beyond_main_diagonal.first()=0;
below_main_diagonal.last()=0;
и благодаря этому T [0] всегда будет равно нулю, а T [N-1] будет равно 1;
И в статье, где я читал о методе Томаса, первым шагом было отрицание главной диагонали, я сделал это, но затем в конце функции я должен сделать обратное, так:
for(int i(0);i<N;++i){
main_diagonal[i]*=(-1);
}
и мы можем использовать эту функцию снова, это не совсем оптимально, но работает стабильно.
Тогда весь код будет выглядеть так:
#include <QCoreApplication>
#include <QVector>
#include <QDebug>
#include <iostream>QVector<float> Thomas_Algorithm( QVector<float> &below_main_diagonal ,
QVector<float> &main_diagonal ,
QVector<float> &beyond_main_diagonal ,
QVector<float> &free_term,
const int N){
QVector<float> x; //vector of result
// checking of input data
if(below_main_diagonal.size()!=main_diagonal.size()||
main_diagonal.size()!=beyond_main_diagonal.size()||
free_term.size()!=main_diagonal.size())
{ qDebug()<<"Error!\n""Error with accepting Arrays! Dimensities are different!"<<endl;
x.resize(0);
return x;
}
if(below_main_diagonal[0]!=0){
qDebug()<< "Error!\n""First element of below_main_diagonal must be equal to zero!"<<endl;
x.resize(0);
return x;
}
if(beyond_main_diagonal.last()!=0){
qDebug()<< "Error!\n""Last element of beyond_main_diagonal must be equal to zero!"<<endl;
x.resize(0);
return x;
}
// end of checking
QVector <float> c;
QVector <float> d;
for(int i=0;i<N;i++){
main_diagonal[i]*=(-1);
}
c.push_back(beyond_main_diagonal[0]/main_diagonal[0]);
d.push_back(-free_term[0]/main_diagonal[0]);
for(int i=1;i<=N-2;i++){
c.push_back(beyond_main_diagonal[i]/(main_diagonal[i]-below_main_diagonal[i]*c[i-1]));
d.push_back( (below_main_diagonal[i]*d[i-1] - free_term[i]) /
(main_diagonal[i]- below_main_diagonal[i]*c[i-1]) );
}
x.resize(N);
int n=N-1;
x[n]=(below_main_diagonal[n]*d[n-1]-free_term[n])/(main_diagonal[n]-below_main_diagonal[n]*c[n-1]);
for(int i=n-1;i>=0;i--){
x[i]=c[i]*x[i+1]+d[i];
}
for(int i(0);i<N;++i){
main_diagonal[i]*=(-1);
}
return x;
}
int main()
{
QVector <float> alpha; // below
QVector <float> beta; // main diagonal * (-1)
QVector <float> gamma; // beyond
QVector <float> b; // free termQVector<float> T;
int cells_x=30; // amount of steps
alpha.resize(cells_x);
beta.resize(cells_x);
gamma.resize(cells_x);
T.resize(cells_x );
float dt=0.2,h=0.1;
alpha[0]=0;
for(int i=1;i<cells_x-1;i++){
alpha[i]= -dt/(h*h);
}
alpha[cells_x-1]=0;
beta[0]=1;
for(int i=1;i<cells_x-1;i++){
beta[i] = (2*dt)/(h*h)+1;
}
beta[cells_x-1]=1;
gamma[0]=0;
for(int i=1;i<cells_x-1;i++){
gamma[i]= -dt/(h*h);
}
gamma[cells_x-1]=0;
for(int i=0;i<cells_x-1;i++){
T[i]=0;
}
T[cells_x-1]=1;
QVector<float>Tn;
Tn.resize(cells_x);
Tn= Thomas_Algorithm(alpha,beta,gamma,T,cells_x);
// boundary conditions!
beta.first()=1;
beta.last()=1;
gamma.first()=0;
alpha.last()=0;
// and then due to bc we always have T[0]=0 and T[n]=1
for(int stepTime=0;stepTime<100;stepTime++){
Tn = Thomas_Algorithm(alpha,beta,gamma,Tn,cells_x);
qDebug()<<"stepTime = "<<stepTime<<endl<<endl;
qDebug()<<Tn<<endl;
// boundary conditions!
beta.first()=1;
beta.last()=1;
gamma.first()=0;
alpha.last()=0;
// and then due to bc we always have T[0]=0 and T[n]=1
}
return 0;
}
и на последнем шаге мы собираемся получить абсолютно «физические» результаты:
Tn <30 items> QVector<float>
0 float
0.0344828 float
0.0689656 float
0.103448 float
0.137931 float
0.172414 float
0.206897 float
0.24138 float
0.275862 float
0.310345 float
0.344828 float
0.379311 float
0.413793 float
0.448276 float
0.482759 float
0.517242 float
0.551724 float
0.586207 float
0.62069 float
0.655173 float
0.689655 float
0.724138 float
0.758621 float
0.793104 float
0.827586 float
0.862069 float
0.896552 float
0.931035 float
0.965517 float
1 float
Других решений пока нет …