Мой лектор дал мне задание на создание программы для преобразования и добавления выражения в постфикс с использованием стеков. Я сделал классы стека и некоторые функции для чтения выражения инфикса.
Но эта функция называется convertToPostfix(char * const inFix, char * const postFix)
которая отвечает за преобразование выражения inFix в массиве inFix в выражение post fix в массиве postFix с использованием стеков, не выполняет то, что предполагает. Ребята, вы можете мне помочь и сказать, что я делаю неправильно?
Ниже приведен код для преобразования функций из inFix в postFix и convertToPostfix(char * const inFix, char * const postFix)
это то, что мне нужно помочь исправить:
void ArithmeticExpression::inputAndConvertToPostfix()
{
char inputChar; //declaring inputChar
int i = 0; //inizalize i to 0
cout << "Enter the Arithmetic Expression(No Spaces): ";
while( ( inputChar = static_cast<char>( cin.get() ) ) != '\n' )
{
if (i >= MAXSIZE) break; //exits program if i is greater than or equal to 100
if(isdigit(inputChar) || isOperator(inputChar))
{
inFix[i] = inputChar; //copies each char to inFix array
cout << inFix[i] << endl;
}
else
cout << "You entered an invalid Arithmetic Expression\n\n" ;
}
// increment i;
i++;
convertToPostfix(inFix, postFix);}bool ArithmeticExpression::isOperator(char currentChar)
{
if(currentChar == '+')
return true;
else if(currentChar == '-')
return true;
else if(currentChar == '*')
return true;
else if(currentChar == '/')
return true;
else if(currentChar == '^')
return true;
else if(currentChar == '%')
return true;
else
return false;
}
bool ArithmeticExpression::precedence(char operator1, char operator2)
{
if ( operator1 == '^' )
return true;
else if ( operator2 == '^' )
return false;
else if ( operator1 == '*' || operator1 == '/' )
return true;
else if ( operator1 == '+' || operator1 == '-' )
if ( operator2 == '*' || operator2 == '/' )
return false;
else
return true;
return false;
}
void ArithmeticExpression::convertToPostfix(char * const inFix, char * const postFix)
{
Stack2<char> stack;
const char lp = '(';
stack.push(lp); //Push a left parenthesis ‘(‘ onto the stack.
strcat(inFix,")");//Appends a right parenthesis ‘)’ to the end of infix.
// int i = 0;
int j = 0;
if(!stack.isEmpty())
{
for(int i = 0;i < 100;){
if(isdigit(inFix[i]))
{
postFix[j] = inFix[i];
cout << "This is Post Fix for the first If: " << postFix[j] << endl;
i++;
j++;
}
if(inFix[i] == '(')
{
stack.push(inFix[i]);
cout << "The InFix was a (" << endl;
i++;
//j++;
}
if(isOperator(inFix[i]))
{
char operator1 = inFix[i];
cout << "CUrrent inFix is a operator" << endl;
if(isOperator(stack.getTopPtr()->getData()))
{
cout << "The stack top ptr is a operator1" << endl;
char operator2 = stack.getTopPtr()->getData();
if(precedence(operator1,operator2))
{
//if(isOperator(stack.getTopPtr()->getData())){
cout << "The stack top ptr is a operato2" << endl;
postFix[j] = stack.pop();
cout << "this is post fix " << postFix[j] << endl;
i++;
j++;
// }
}
}
else
stack.push(inFix[i]);
// cout << "Top Ptr is a: "<< stack.getTopPtr()->getData() << endl;}
for(int r = 0;r != '\0';r++)
cout << postFix[r] << " ";
if(inFix[i] == ')')
{
while(stack.stackTop()!= '(')
{
postFix[j] = stack.pop();
i++;
j++;
}
stack.pop();
}
}
}
}
Обратите внимание, что функция convertToPostfix была создана с использованием этого алгоритма:
Пока стек не пустой, прочитайте инфикс слева направо и сделайте следующее:
Если текущий символ в инфиксе является оператором,
Это в основном комментарий к ответу Юуши.
precedence(rightOp, leftOp)
). Затем вы должны документировать, что означает результат — прямо сейчас вы возвращаете true, если a rOp b lOp c == (a rOp b) lOp c
(да, порядок операторов не совпадает с тем, что вы называете — «+» и «-», например, не совпадают в обоих заказах).a - b * c
ваш вывод a b c
и стек [- *]
, теперь вы читаете +
, и вам нужно вытолкнуть оба оператора, в результате чего a b c * -
, Т.е., вход a - b * c + d
должно привести к a b c * - d +
Обновить: добавлено полное решение (основано на ответе Юуши):
bool isOperator(char currentChar)
{
switch (currentChar) {
case '+':
case '-':
case '*':
case '/':
case '^':
case '%':
return true;
default:
return false;
}
}
// returns whether a `lOp` b `rOp` c == (a `lOp` b) `rOp` c
bool precedence(char leftOperator, char rightOperator)
{
if ( leftOperator == '^' ) {
return true;
} else if ( rightOperator == '^' ) {
return false;
} else if ( leftOperator == '*' || leftOperator == '/' || leftOperator == '%' ) {
return true;
} else if ( rightOperator == '*' || rightOperator == '/' || rightOperator == '%' ) {
return false;
}
return true;
}
#include <stdexcept>
#include <cctype>
#include <sstream>
#include <stack>
std::string convertToPostfix(const std::string& infix)
{
std::stringstream postfix; // Our return string
std::stack<char> stack;
stack.push('('); // Push a left parenthesis ‘(‘ onto the stack.
for(std::size_t i = 0, l = infix.size(); i < l; ++i) {
const char current = infix[i];
if (isspace(current)) {
// ignore
}
// If it's a digit or '.' or a letter ("variables"), add it to the output
else if(isalnum(current) || '.' == current) {
postfix << current;
}
else if('(' == current) {
stack.push(current);
}
else if(isOperator(current)) {
char rightOperator = current;
while(!stack.empty() && isOperator(stack.top()) && precedence(stack.top(), rightOperator)) {
postfix << ' ' << stack.top();
stack.pop();
}
postfix << ' ';
stack.push(rightOperator);
}
// We've hit a right parens
else if(')' == current) {
// While top of stack is not a left parens
while(!stack.empty() && '(' != stack.top()) {
postfix << ' ' << stack.top();
stack.pop();
}
if (stack.empty()) {
throw std::runtime_error("missing left paren");
}
// Discard the left paren
stack.pop();
postfix << ' ';
} else {
throw std::runtime_error("invalid input character");
}
}// Started with a left paren, now close it:
// While top of stack is not a left paren
while(!stack.empty() && '(' != stack.top()) {
postfix << ' ' << stack.top();
stack.pop();
}
if (stack.empty()) {
throw std::runtime_error("missing left paren");
}
// Discard the left paren
stack.pop();
// all open parens should be closed now -> empty stack
if (!stack.empty()) {
throw std::runtime_error("missing right paren");
}
return postfix.str();
}
#include <iostream>
#include <string>
int main()
{
for (;;) {
if (!std::cout.good()) break;
std::cout << "Enter the Arithmetic Expression: ";
std::string infix;
std::getline(std::cin, infix);
if (infix.empty()) break;
std::cout << "Postfix: '" << convertToPostfix(infix) << "'\n";
}
return 0;
}
Таким образом, есть ряд проблем с вашим кодом. Я опубликую, что (должно быть) исправленное решение, в котором есть обильные комментарии, чтобы объяснить, что происходит и где вы допустили ошибки. Несколько вещей заранее:
Я буду использовать std::string
вместо char *
потому что это делает вещи намного чище, и, честно говоря, вы должны использовать его в C++
если у вас нет очень веских причин не делать этого (например, C
библиотека). Эта версия также возвращает string
вместо того, чтобы взять char *
в качестве параметра.
Я использую стек из стандартной библиотеки, <stack>
, который немного отличается от вашего домашнего проката. top()
показывает следующий элемент без удаляя его из стека, и pop()
возвращается void
, но удаляет верхний элемент из стека.
Это бесплатная функция, не являющаяся частью класса, но ее должно быть легко изменить — мне просто проще протестировать этот способ.
Я не уверен, что ваши таблицы приоритетов операторов верны, однако я позволю вам проверить это дважды.
#include <stack>
#include <cctype>
#include <iostream>
std::string convertToPostfix(std::string& infix)
{
std::string postfix; //Our return string
std::stack<char> stack;
stack.push('('); //Push a left parenthesis ‘(‘ onto the stack.
infix.push_back(')');
//We know we need to process every element in the string,
//so let's do that instead of having to worry about
//hardcoded numbers and i, j indecies
for(std::size_t i = 0; i < infix.size(); ++i) {
//If it's a digit, add it to the output
//Also, if it's a space, add it to the output
//this makes it look a bit nicer
if(isdigit(infix[i]) || isspace(infix[i])) {
postfix.push_back(infix[i]);
}
//Already iterating over i, so
//don't need to worry about i++
//Also, these options are all mutually exclusive,
//so they should be else if instead of if.
//(Mutually exclusive in that if something is a digit,
//it can't be a parens or an operator or anything else).
else if(infix[i] == '(') {
stack.push(infix[i]);
}
//This is farily similar to your code, but cleaned up.
//With strings we can simply push_back instead of having
//to worry about incrementing some counter.
else if(isOperator(infix[i]))
{
char operator1 = infix[i];
if(isOperator(stack.top())) {
while(!stack.empty() && precedence(operator1,stack.top())) {
postfix.push_back(stack.top());
stack.pop();
}
}
//This shouldn't be in an else - we always want to push the
//operator onto the stack
stack.push(operator1);
}
//We've hit a right parens - Why you had a for loop
//here originally I don't know
else if(infix[i] == ')') {
//While top of stack is not a right parens
while(stack.top() != '(') {
//Insert into postfix and pop the stack
postfix.push_back(stack.top());
stack.pop();
}
// Discard the left parens - you'd forgotten to do this
stack.pop();
}
}
//Remove any remaining operators from the stack
while(!stack.empty()) {
postfix.push_back(stack.top());
stack.pop();
}
}
Вот мое использование C с многозначным вычислением.
#include <stdio.h>
#include <math.h>
#define MAX 50
void push(char[],char);
void in_push(double[], double);
int pop();
int prec(char);
double eval(char[],int,double[]);
int top = 0;
void main() {
double eval_stack[MAX];
int op_count=0;
char stack[MAX], exps[MAX], symbols[MAX];
int i=0,j=0,len,check;
while((symbols[i]=getchar())!='\n') {
if(symbols[i]!=' ' || symbols[i]!='\t') {
if(symbols[i]=='+' || symbols[i]=='-' || symbols[i]=='/' || symbols[i]=='*' || symbols[i]=='^')
op_count++;
i++;
}
}
symbols[i]='#';
symbols[++i]='\0';
len = strlen(symbols);
stack[top] = '#';
for(i=0; i<=len; i++) {
if(symbols[i]>='a' && symbols[i]<='z') {
exps[j]=symbols[i];
j++;
}
switch(symbols[i]) {
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
//if(symbols[i]>='a' && symbols[i]<='z') {
exps[j]=symbols[i];
j++;
break;
case '+': case '-': case '*': case '/': case '^':
exps[j++] = ' ';
while(prec(symbols[i]) <= prec(stack[top])) {
exps[j] = stack[top];
pop();
//printf("\n\t\t%d\t\t%d\n", top,j);
j++;}
if(prec(symbols[i]) > prec(stack[top])) {
push(stack,symbols[i]);
}
break;
case '(':
push(stack,symbols[i]);
break;
case ')':
while(stack[top]!='(') {
exps[j] = stack[top];
pop();
j++;
}
pop();
break;
case '#':
exps[j++] = ' ';
while(stack[top]!='#') {
exps[j] = stack[top];
pop();
j++;
}
pop();
break;
}
}
exps[j]='\0';
printf("Postfix: %s", exps);
for(i=0; i<j; i++)
if(exps[i]=='a')
check = 1;
if(check!=1)
printf("\nSolution: %.1f", eval(exps,j,eval_stack));
}
double eval(char exps[],int exps_len,double eval_stack[]) {
int i; int len=exps_len,temp;
double in_temp[MAX],t;
int count,power,j,in_count;
count=power=j=t=in_count=0;
double result;
for(i=0; i<len; i++) {
switch(exps[i]) {
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
in_temp[i] = exps[i]-'0';
j=i+1;
while(exps[j]>='0' && exps[j]<='9') {
in_temp[j] = exps[j]-'0';
j++; // 2
}
count = i; // 3
while(in_temp[count]<='0' && in_temp[count]<='9') {
power = (j-count)-1;
t = t + in_temp[count]*(pow(10,power));
power--;
count++;
}
in_push(eval_stack,t);
i=j-1;
t=0;
break;
case '+':
temp = pop();
pop();
result = eval_stack[temp] + eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '-':
temp = pop();
pop();
result = eval_stack[temp] - eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '*':
temp = pop();
pop();
result = eval_stack[temp] * eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '/':
temp = pop();
pop();
result = eval_stack[temp] / eval_stack[temp+1];
in_push(eval_stack,result);
break;
case '^':
temp = pop();
pop();
result = pow(eval_stack[temp],eval_stack[temp+1]);
in_push(eval_stack,result);
break;
}
}
return eval_stack[top];
}
int prec(char a) {
if(a=='^')
return 3;
else if(a=='*' || a=='/' || a=='%')
return 2;
else if(a=='+' || a=='-')
return 1;
else if(a=='(')
return 0;
else
return -1;
}
void push(char stack[], char ele) {
if(top>=MAX) {
printf("\nStack Overflow");
exit(1);
}
stack[++top] = ele;
}
void in_push(double stack[], double ele) {
if(top>=MAX) {
printf("\nStack Overflow");
exit(1);
}
stack[++top] = ele;
}
int pop() {
if(top<0) {
printf("\nStack Underflow");
exit(1);
}
top = top - 1;
return top;
}
Реализация на C ++ приведена ниже:
void infix2postfix(string s)
{
stack<char>st;
for(int i=0; i<s.length(); i++)
{
if(isdigit(s[i]) || isalpha(s[i])) cout<<s[i];
else if( s[i]==')' )
{
while(st.top()!='(')
{
cout<<st.top();
st.pop();
}
st.pop();
}
else st.push(s[i]);
}
}
Приоритет оператора является проблемой в этом случае. Правильный приоритет оператора в порядке убывания:
mul, div, mod << *, /, % >>
add, sub << +, - >>
XOR << ^ >>
В приведенном выше вопросе рассмотрим функцию приоритета
bool ArithmeticExpression::precedence(char operator1, char operator2)
{
if ( operator1 == '^' )
return true;
else if ( operator2 == '^' )
return false;
else if ( operator1 == '*' || operator1 == '/' )
return true;
else if ( operator1 == '+' || operator1 == '-' )
if ( operator2 == '*' || operator2 == '/' )
return false;
else
return true;
return false;
}
для каждого значения в operator1 соответствующее значение operator2 должно быть проверено на приоритетность в соответствии с ТАБЛИЦЕЙ ОПЕРАТОРА, упомянутой выше. Не возвращайте значения без правильного сравнения.