Предотвращение разыменовываемой ошибки std :: deque между неуправляемым кодом c ++, c ++ / cli и c #

У меня есть решение VS2015, состоящее из неуправляемого кода C ++ (для выполнения некоторых симуляций с интенсивным использованием процессора), обертки вокруг этого кода c ++ / cli и проекта c #, который вызывает обертки c ++ / cli через DLL. Следующий пример является упрощенной версией полного кода, извините за количество кода заранее, но он необходим для полной картины происходящего.

Неуправляемый код C ++

class diffusion_limited_aggregate {
public:
diffusion_limited_aggregate()
: aggregate_map(), attractor_set(), batch_queue() {}
std::size_t size() const noexcept { return aggregate_map.size(); }
std::queue<std::pair<int,int>>& batch_queue_handle() noexcept { return batch_queue; }
void generate(std::size_t n) {
initialise_attractor_structure(); // set up initial attractor seed points
std::size_t count = 0U;
std::pair<int,int> current = std::make_pair(0,0);
std::pair<int,int> prev = current;
bool has_next_spawned = false;
while (size() < n) {
if (!has_next_spawned) {
// => call function to spawn particle setting current
has_next_spawned = true;
}
prev = current;
// => call function to update random walking particle position
// => call function to check for lattice boundary collision
if (aggregate_collision(current, prev, count)) has_next_spawned = false;
}
}
void initialise_attractor_structure() {
attractor_set.clear();
attractor_set.insert(std::make_pair(0,0));
}
void push_particle(const std::pair<int,int>& p, std::size_t count) {
aggregate_map.insert(std::make_pair(p, count));
batch_queue.push(p);
}
bool aggregate_collision(const std::pair<int,int>& current,
const std::pair<int,int>& prev, std::size_t& count) {
if (aggregate_map.find(current) != aggregate_map.end()
|| attractor_set.find(current) != attractor_set.end()) {
push_particle(previous, ++count);
return true;
}
return false;
}
private:
std::unordered_map<std::pair<int,int>,
std::size_t,
utl::tuple_hash> aggregate_map;
std::unordered_set<std::pair<int,int>, utl::tuple_hash> attractor_set;
std::queue<std::pair<int,int>> batch_queue; // holds buffer of aggregate points
};

куда utl::tuple_hash является объектом функции хеширования std::pair и, в более общем плане, std::tuple экземпляры, определяемые как:

namespace utl {
template<class Tuple, std::size_t N>
struct tuple_hash_t {
static std::size_t tuple_hash_compute(const Tuple& t) {
using type = typename std::tuple_element<N-1, Tuple>::type;
return tuple_hash_t<Tuple,N-1>::tuple_hash_compute(t)
+ std::hash<type>()(std::get<N-1>(t));
}
};
// base
template<class Tuple>
struct tuple_hash_t<Tuple, 1> {
static std::size_t tuple_hash_compute(const Tuple& t) {
using type = typename std::tuple_element<0,Tuple>::type;
return 51U + std::hash<type>()(std::get<0>(t))*51U;
}
};
struct tuple_hash {
template<class... Args>
std::size_t operator()(const std::tuple<Args...>& t) const {
return tuple_hash_t<std::tuple<Args...>,sizeof...(Args)>::tuple_hash_compute(t);
}
template<class Ty1, class Ty2>
std::size_t operator()(const std::pair<Ty1, Ty2>& p) const {
return tuple_hash_t<std::pair<Ty1,Ty2>,2>::tuple_hash_compute(p);
}
};
}

Управляемый C ++ / CLI Wrapper

Следующее является оберткой в ​​C ++ / Cli вокруг класса diffusion_limited_aggregate, важный метод в этом случае ProcessBatchQueue, Этот метод, где std::deque iterator not dereferencable error должно произойти, так как это единственное место, в котором batch_queue доступ к содержимому и выскочил.

public ref class ManagedDLA2DContainer {
private:
diffusion_limited_aggregate* native_dla_2d_ptr;
System::Object^ lock_obj = gcnew System::Object();
public:
ManagedDLA2DContainer() : native_dla_2d_ptr(new diffusion_limited_aggregate()) {}
~ManagedDLA2DContainer() { delete native_dla_2d_ptr; }
std::size_t Size() { return native_dla_2d_ptr->size(); }
void Generate(std::size_t n) { native_dla_2d_ptr->generate(n); }
System::Collections::Concurrent::BlockingCollection<
System::Collections::Generic::KeyValuePair<int,int>
>^ ProcessBatchQueue() {
// store particles in blocking queue configuration
System::Collections::Concurrent::BlockingCollection<
System::Collections::Generic::KeyValuePair<int,int>>^ blocking_queue =
gcnew System::Collections::Concurrent::BlockingCollection<
System::Collections::Generic::KeyValuePair<int,int>
>();
System::Threading::Monitor::Enter(lock_obj); // define critical section start
try {
// get ref to batch_queue
std::queue<std::pair<int,int>>& bq_ref = native_dla_2d_ptr->batch_queue_handle();
// loop over bq transferring particles to blocking_queue
while (!bq_ref.empty()) {
auto front = std::move(bq_ref.front());
blocking_queue->Add(System::Collections::Generic::KeyValuePair<int,int>(front.first,front.second));
bq_ref.pop();
}
}
finally { System::Threading::Monitor::Exit(lock_obj); }
return blocking_queue;
}
}

Код C #

Наконец, у меня есть следующий код C #, который использует ManagedDLA2DContainer производить агрегаты и отображать их на интерфейсе.

public partial class MainWindow : Window {
private static readonly System.object locker = new object();
private readonly ManagedDLA2DContainer dla_2d;
public MainWindow() {
InitializeComponent();
dla_2d = new ManagedDLA2DContainer();
}
private void GenerateAggregate(uint n) {
// start asynchronous task to perform aggregate simulation computations
Task.Run(() => CallNativeCppAggregateGenerators(n));
System.Threading.Thread.Sleep(5);
// start asynchronous task to perform rendering
Task.Run(() => AggregateUpdateListener(n));
}
private void CallNativeCppAggregateGenerators(uint n) {
dla_2d.Generate(n);
}
private void AggregateUpdateListener(uint n) {
const double interval = 10.0;
Timer timer = new Timer(interval);
timer.Elapsed += Update2DAggregateOnTimedEvent;
timer.AutoReset = true;
timer.Enabled = true;
}
private void Update2DAggregateOnTimedEvent(object source, ElapsedEventArgs e) {
lock(locker) {
BlockingCollection<KeyValuePair<int,int>> bq = dla_2d.ProcessBatchQueue();
while(bq.Count != 0) {
KeyValuePair<int,int> p = bq.Take();
Point3D pos = new Point3D(p.Key, p.Value, 0.0);
// => do stuff with pos, sending to another class method for rendering
// using Dispatcher.Invoke(() => { ... }); to render in GUI
}
}
}
}

Метод GenerateAggregate вызывается только один раз для выполнения агрегата, он вызывается с помощью метода обработчика кнопки, так как у меня есть Generate метод на интерфейсе с OnGenerateButtonClicked функция обработчика событий, которая вызывает GenerateAggreate, И то и другое CallNativeCppAggregateGenerators а также AggregateUpdateListener не вызывается нигде в коде.


Проблема

Как упомянуто в разделе управляемой оболочки, при выполнении этого кода я иногда получаю ошибку подтверждения времени выполнения,

std::deque итератор не разыменовывается.

Это имеет место при первом выполнении, но также происходит и в середине текущего процесса генерации агрегата, поэтому стартовый код для генерации агрегата здесь, вероятно, не является виновником.

Как я могу решить эту проблему? Надеюсь, это простой случай некоторой логической ошибки в моем критическом коде раздела или подобном, но я пока не смог точно определить точную проблему.

Как указано в комментариях, проблема может заключаться в том, что элементы постоянно добавляются batch_queue в то время как поток C # вызывает ProcessBatchQueue потребляет элементы очереди, тем самым, возможно, делает недействительным batch_queueитераторы. Существует ли типичный шаблон проектирования «производитель-потребитель», который можно применить к этому варианту использования?

Редактировать: было бы неплохо, если бы downvoter мог привести свои причины, чтобы я мог улучшить вопрос.

0

Решение

Я пришел к решению этой проблемы, которое будет подробно описано ниже. Как указано в вопросе, проблема заключалась в том, что при обработке batch_queue его итераторы иногда бывали недействительными из-за непрерывного помещения элементов в очередь в процессе генерации совокупности.

Это решение использует немного больше памяти, чем предыдущее batch_queue основанная на реализации, однако, она безопасна в отношении валидности итераторов. Я заменил batch_queue с std::vector<std::pair<int,int>> буфер агрегатных частиц в собственном коде c ++:

class diffusion_limited_aggregate {
public:
//...
const std::vector<std::pair<int,int>>& aggregate_buffer() const noexcept { return buffer; }
private:
//...
std::vector<std::pair<int,int>> buffer;
};

затем ManagedDLA2DContainer::ProcessBatchQueue был заменен на ManagedDLA2DContainer::ConsumeBuffer который читает до отмеченного индекса и помещает самую последнюю порцию агрегатных частиц в c # List<KeyValuePair<int,int>>:

System::Collections::Generic::List<System::Collections::Generic::KeyValuePair<int, int>>^ ConsumeBuffer(std::size_t marked_index) {
System::Collections::Generic::List<System::Collections::Generic::KeyValuePair<int, int>>^ buffer =
gcnew System::Collections::Generic::List<System::Collections::Generic::KeyValuePair<int, int>>();
if (native_dla_2d_ptr->aggregate_buffer().empty()) return buffer;
System::Threading::Monitor::Enter(lock_obj);    // define critical section start
try {   // execute critical section
// read from last marked buffer index up to size of buffer and write these data to batch list
for (int i = marked_index; i < native_dla_2d_ptr->aggregate_buffer().size(); ++i) {
buffer->Add(System::Collections::Generic::KeyValuePair<int, int>(
native_dla_2d_ptr->aggregate_buffer()[i].first,
native_dla_2d_ptr->aggregate_buffer()[i].second
)
);
}
}
finally { System::Threading::Monitor::Exit(lock_obj); } // exit critical section by releasing exclusive lock
return buffer;
}

И, наконец, код в C # MainWindow::Update2DAggregateOnTimedEvent Метод был изменен, чтобы отразить эти изменения в коде c ++ / cli:

private void Update2DAggregateOnTimedEvent(object source, ElapsedEventArgs e, uint n) {
lock (locker) {
List<KeyValuePair<int,int>> buffer = dla_2d.ConsumeBuffer(
(current_particles == 0) ? 0 : current_particles-1); // fetch batch list
foreach (var p in buffer) {
// => add p co-ords to GUI manager...
++current_particles;
// => render aggregate...
}
}
}
1

Другие решения

Других решений пока нет …

По вопросам рекламы [email protected]