Итак, у меня есть следующий шкипер ци:
template<typename Iterator> struct verilog_skipper :
public qi::grammar<Iterator> {
verilog_skipper() : verilog_skipper::base_type(skip) {
namespace phx = boost::phoenix;
skip = qi::ascii::space | qi::eol | line_comment;
line_comment = (qi::lit("//") >> *(qi::char_ - qi::eol) >> *(qi::eol));
}
qi::rule<Iterator> skip;
qi::rule<Iterator> line_comment;
};
и следующая грамматика ци:
template <typename Iterator,
typename Skipper = verilog_skipper<Iterator> struct verilog_grammer :
qi::grammar<Iterator, Skipper> {
verilog_ast ckt_ast;
verilog_grammer()
: verilog_grammer::base_type(module) {
namespace phx = boost::phoenix;
module = (module_definition >> statements >> qi::lit("endmodule"));
statements = statement % ';';
statement = (input_wires | instance);
module_definition = (qi::lit("module") >> ident >> qi::char_('(')
>> ident_list >> qi::char_(')') >> ';' );
input_wires = (qi::lit("input") >> ident_list);
instance = (ident >> ident >>
qi::char_('(') >> connection_pair_list >> qi::char_(')'));
connection_pair_list = connection_pair % ',';
connection_pair = (qi::char_('.')[phx::bind(&found_smth)]
>> ident >> qi::char_('(') >> ident >> qi::char_(')'));
ident_list = ident % ',';
ident = (qi::char_("a-zA-Z_") >> *qi::char_("a-zA-Z_0-9"));
}
qi::rule<Iterator, Skipper> module;
qi::rule<Iterator, Skipper> module_definition;
qi::rule<Iterator, Skipper> statements;
qi::rule<Iterator, Skipper> statement;
qi::rule<Iterator, Skipper> instance;
qi::rule<Iterator, Skipper> input_wires;
qi::rule<Iterator, std::vector<std::pair<std::string, std::string> >(), Skipper> connection_pair_list;
qi::rule<Iterator, std::pair<std::string, std::string>(), Skipper> connection_pair;
qi::rule<Iterator, std::vector<std::string>(), Skipper> ident_list;
qi::rule<Iterator, std::string(), Skipper> ident;
};
Я связал found_smth
функция до символа точки в грамматике. Я чувствую, что правила верны, но я не могу сопоставить пары соединений в следующих входных данных, и анализ не выполняется, поскольку итераторы не достигают друг друга:
module mymod (A, B);
input A, B;
XOR21 gatexor5 (.A(B) , .C(D));
endmodule
Шкипер поглощает точку? Я должен получить спичку на месте сразу же, верно? Может кто-нибудь помочь мне определить проблему?
Вот мой main
код:
typedef verilog_skipper<std::string::const_iterator> verilog_skipper;
typedef verilog_grammer<std::string::const_iterator, verilog_skipper> verilog_grammar;
verilog_grammar vg; // Our grammar
verilog_skipper vg_skip; // Our grammar
using boost::spirit::ascii::space;
std::string::const_iterator iter = storage.begin();
std::string::const_iterator end = storage.end();
bool r = qi::phrase_parse(iter, end, vg, vg_skip);
if (r && iter == end)
{
std::cout << "-------------------------\n";
std::cout << "Parsing succeeded\n";
std::cout << "-------------------------\n";
return 0;
}
Несколько вещей.
Вам нужно освежить шкиперы и лексемы:
В частности, qi::eol
это часть qi::space
(не qi::blank
). Я бы указал шкипера просто как
skip = qi::ascii::space | line_comment;
line_comment = "//" >> *(qi::char_ - qi::eol) >> (qi::eol|qi::eoi);
Более конкретно, вам нужно / нужно / убедиться, что идентификаторы являются лексемой. Самый простой способ — исключить шкипера из декларации правила. Иначе "a b\nc"
это совершенно правильное написание идентификатора "abc"
,
// lexemes
qi::rule<Iterator, std::string()> primitive_gate, ident;
Далее ваши образцы шоу каждый заявление прекращено ';'
, Но ваша грамматика говорит:
statements = statement % ';';
Это позволит "S1"
, "S1;S2"
, … но не "S1;"
, Есть несколько способов это исправить. Самый простой, казалось бы,
statements = +(statement >> ';'); // require exactly one `;` always
В качестве альтернативы, если "S1;;;;"
также приемлемо, вы могли бы сказать,
statements = +(statement >> +qi::lit(';')); // require at least one `;` always
Обратите внимание, что это будет не принимать ";;;S1;;"
ни ""
как вы могли ожидать. Шаблон, который я часто использую, является необязательным списком элементов:
statements = -statement % ';'; // simple and flexible
Который имеет хороший способ принятия ""
, ";"
, ";;"
, "S1"
, ";;S1;"
и т.д. Обратите внимание, это не столь же эффективный, как нечто более многословное
statements = *(*qi::lit(';') >> statement >> +qi::lit(';')); // require exactly one `;` always
Я отмечаю, что вы используете qi::char_('(')
(и аналогичный), который будет выставлять соответствующий символ в синтезированном атрибуте. это очень маловероятно это то, что вы имеете в виду. использование qi::lit('(')
вместо этого или действительно, использование пустых символьных / строковых литералов в выражении вашего синтаксического анализатора приведет к их преобразованию в выражения синтаксического анализатора¹
Подумайте об использовании BOOST_SPIRIT_DEBUG, чтобы понять, что делает ваша грамматика
Инкапсулируйте свой шкипер, так как вызывающий не должен беспокоиться об этом, и вы, вероятно, не хотите, чтобы пользователи вашей грамматики могли менять шкипер (который может нарушить всю грамматику).
Попробуйте использовать символы вместо перечисления ключевых слов, например:
primitive_gate = qi::lit("nand") | "nor" | "and" | "or" | "xor" |
"xnor" | "buf" | "not";
Обратите внимание на порядок и соответствие ключевых слов. Если вы анализируете идентификатор, ключевое слово, как nand
будет соответствовать. Если у вас есть такой идентификатор, как xor21
однако ключевое слово xor
будет соответствовать в первую очередь. Вы можете / должны принять меры против этого (Как правильно анализировать зарезервированные слова в духе буста)
Обратите внимание, что наличие семантического действия (например, found_smth
) угнетает автоматическое распространение атрибутов, если вы не используете operator%=
назначить выражение парсера правилу.
Применяя вышеизложенное …:
#define BOOST_SPIRIT_DEBUG
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/spirit/repository/include/qi_distinct.hpp>
#include <boost/fusion/adapted.hpp>
namespace qi = boost::spirit::qi;
static void found_smth() { std::cout << __PRETTY_FUNCTION__ << "\n"; }
template <typename Iterator> struct verilog_skipper : qi::grammar<Iterator> {
verilog_skipper() : verilog_skipper::base_type(skip) {
skip = qi::ascii::space | line_comment;
line_comment = "//" >> *(qi::char_ - qi::eol) >> (qi::eol|qi::eoi);
}
private:
qi::rule<Iterator> skip;
qi::rule<Iterator> line_comment;
};
template <typename Iterator>
struct verilog_grammar : qi::grammar<Iterator> {
//verilog_ast ckt_ast;
typedef verilog_skipper<Iterator> Skipper;
verilog_grammar() : verilog_grammar::base_type(start) {
namespace phx = boost::phoenix;
using boost::spirit::repository::qi::distinct;
auto kw = distinct(qi::char_("a-zA-Z_0-9"));
start = qi::skip(qi::copy(skipper)) [module];
module = (module_definition >> statements >> kw["endmodule"]);
module_definition = (kw["module"] >> ident >> '(' >> ident_list >> ')' >> ';');
statements = -statement % ';';
statement = input_wires | output_wires | internal_wires | primitive | instance;
input_wires = kw["input"] >> ident_list;
output_wires = kw["output"] >> ident_list;
internal_wires = kw["wire"] >> ident_list;
primitive = primitive_gate >> ident >> '(' >> ident_list >> ')';
instance = ident >> ident >> '(' >> connection_pair_list >> ')';
connection_pair_list = connection_pair % ',';
// NOTE subtle use of `operator%=` in the presence of a semantic action
connection_pair %= (qi::lit('.')[phx::bind(&found_smth)] >> ident
>> '(' >> ident >> ')');
ident_list = ident % ',';
ident = (qi::char_("a-zA-Z_") >> *qi::char_("a-zA-Z_0-9"));
primitive_gate = qi::raw[kw[primitive_gate_]];
BOOST_SPIRIT_DEBUG_NODES(
(module)(module_definition)(statements)(statement)
(primitive)(primitive_gate)(instance)
(output_wires)(input_wires)(input_wires)
(connection_pair_list)(connection_pair)(ident_list)(ident)
)
}
private:
qi::rule<Iterator> start;
qi::rule<Iterator, Skipper> module;
qi::rule<Iterator, Skipper> module_definition;
qi::rule<Iterator, Skipper> statements;
qi::rule<Iterator, Skipper> statement;
qi::rule<Iterator, Skipper> primitive;
qi::rule<Iterator, std::string()> primitive_gate;
qi::rule<Iterator, Skipper> instance;
qi::rule<Iterator, Skipper> output_wires;
qi::rule<Iterator, Skipper> input_wires;
qi::rule<Iterator, Skipper> internal_wires;
qi::rule<Iterator, std::vector<std::pair<std::string, std::string> >(), Skipper> connection_pair_list;
qi::rule<Iterator, std::pair<std::string, std::string>(), Skipper> connection_pair;
qi::rule<Iterator, std::vector<std::string>(), Skipper> ident_list;
// lexemes
qi::rule<Iterator, std::string()> ident;
struct primitive_gate_t : qi::symbols<char> {
primitive_gate_t() { this->add("nand")("nor")("and")("or")("xor")("xnor")("buf")("not"); }
} primitive_gate_;
Skipper skipper;
};
#include <fstream>
int main() {
std::ifstream ifs("input.txt");
using It = boost::spirit::istream_iterator;
It f(ifs >> std::noskipws), l;
bool ok = qi::parse(f, l, verilog_grammar<It>{});
if (ok)
std::cout << "Parsed\n";
else
std::cout << "Parse failed\n";
if (f!=l)
std::cout << "Remaining unparsed '" << std::string(f,l) << "'\n";
}
Печать:
void found_smth()
void found_smth()
Parsed
Или с включенной отладочной информацией (BOOST_SPIRIT_DEBUG
):
<module>
<try>module mymod (A, B);</try>
<module_definition>
<try>module mymod (A, B);</try>
<ident>
<try>mymod (A, B);\n\ninput</try>
<success> (A, B);\n\ninput A, B</success>
<attributes>[[m, y, m, o, d]]</attributes>
</ident>
<ident_list>
<try>A, B);\n\ninput A, B;\n</try>
<ident>
<try>A, B);\n\ninput A, B;\n</try>
<success>, B);\n\ninput A, B;\n\n</success>
<attributes>[[A]]</attributes>
</ident>
<ident>
<try>B);\n\ninput A, B;\n\nXO</try>
<success>);\n\ninput A, B;\n\nXOR</success>
<attributes>[[B]]</attributes>
</ident>
<success>);\n\ninput A, B;\n\nXOR</success>
<attributes>[[[A], [B]]]</attributes>
</ident_list>
<success>\n\ninput A, B;\n\nXOR21</success>
<attributes>[]</attributes>
</module_definition>
<statements>
<try>\n\ninput A, B;\n\nXOR21</try>
<statement>
<try>\n\ninput A, B;\n\nXOR21</try>
<input_wires>
<try>\n\ninput A, B;\n\nXOR21</try>
<input_wires>
<try>\n\ninput A, B;\n\nXOR21</try>
<ident_list>
<try> A, B;\n\nXOR21 gatexo</try>
<ident>
<try>A, B;\n\nXOR21 gatexor</try>
<success>, B;\n\nXOR21 gatexor5</success>
<attributes>[[A]]</attributes>
</ident>
<ident>
<try>B;\n\nXOR21 gatexor5 (</try>
<success>;\n\nXOR21 gatexor5 (.</success>
<attributes>[[B]]</attributes>
</ident>
<success>;\n\nXOR21 gatexor5 (.</success>
<attributes>[[[A], [B]]]</attributes>
</ident_list>
<success>;\n\nXOR21 gatexor5 (.</success>
<attributes>[]</attributes>
</input_wires>
<success>;\n\nXOR21 gatexor5 (.</success>
<attributes>[]</attributes>
</input_wires>
<success>;\n\nXOR21 gatexor5 (.</success>
<attributes>[]</attributes>
</statement>
<statement>
<try>\n\nXOR21 gatexor5 (.A</try>
<input_wires>
<try>\n\nXOR21 gatexor5 (.A</try>
<input_wires>
<try>\n\nXOR21 gatexor5 (.A</try>
<fail/>
</input_wires>
<fail/>
</input_wires>
<output_wires>
<try>\n\nXOR21 gatexor5 (.A</try>
<fail/>
</output_wires>
<primitive>
<try>\n\nXOR21 gatexor5 (.A</try>
<primitive_gate>
<try>XOR21 gatexor5 (.A(B</try>
<fail/>
</primitive_gate>
<fail/>
</primitive>
<instance>
<try>\n\nXOR21 gatexor5 (.A</try>
<ident>
<try>XOR21 gatexor5 (.A(B</try>
<success> gatexor5 (.A(B) , .</success>
<attributes>[[X, O, R, 2, 1]]</attributes>
</ident>
<ident>
<try>gatexor5 (.A(B) , .C</try>
<success> (.A(B) , .C(D));\nen</success>
<attributes>[[g, a, t, e, x, o, r, 5]]</attributes>
</ident>
<connection_pair_list>
<try>.A(B) , .C(D));\nendm</try>
<connection_pair>
<try>.A(B) , .C(D));\nendm</try>
<ident>
<try>A(B) , .C(D));\nendmo</try>
<success>(B) , .C(D));\nendmod</success>
<attributes>[[A]]</attributes>
</ident>
<ident>
<try>B) , .C(D));\nendmodu</try>
<success>) , .C(D));\nendmodul</success>
<attributes>[[B]]</attributes>
</ident>
<success> , .C(D));\nendmodule</success>
<attributes>[[[A], [B]]]</attributes>
</connection_pair>
<connection_pair>
<try> .C(D));\nendmodule\n</try>
<ident>
<try>C(D));\nendmodule\n</try>
<success>(D));\nendmodule\n</success>
<attributes>[[C]]</attributes>
</ident>
<ident>
<try>D));\nendmodule\n</try>
<success>));\nendmodule\n</success>
<attributes>[[D]]</attributes>
</ident>
<success>);\nendmodule\n</success>
<attributes>[[[C], [D]]]</attributes>
</connection_pair>
<success>);\nendmodule\n</success>
<attributes>[[[[A], [B]], [[C], [D]]]]</attributes>
</connection_pair_list>
<success>;\nendmodule\n</success>
<attributes>[]</attributes>
</instance>
<success>;\nendmodule\n</success>
<attributes>[]</attributes>
</statement>
<statement>
<try>\nendmodule\n</try>
<input_wires>
<try>\nendmodule\n</try>
<input_wires>
<try>\nendmodule\n</try>
<fail/>
</input_wires>
<fail/>
</input_wires>
<output_wires>
<try>\nendmodule\n</try>
<fail/>
</output_wires>
<primitive>
<try>\nendmodule\n</try>
<primitive_gate>
<try>endmodule\n</try>
<fail/>
</primitive_gate>
<fail/>
</primitive>
<instance>
<try>\nendmodule\n</try>
<ident>
<try>endmodule\n</try>
<success>\n</success>
<attributes>[[e, n, d, m, o, d, u, l, e]]</attributes>
</ident>
<ident>
<try></try>
<fail/>
</ident>
<fail/>
</instance>
<fail/>
</statement>
<success>\nendmodule\n</success>
<attributes>[]</attributes>
</statements>
<success>\n</success>
<attributes>[]</attributes>
</module>
¹ до тех пор, пока один операнд, участвующий в выражении, находится в области протоэкспрессии Qi
Других решений пока нет …