Я тестирую ускорение OpenCV GPU с помощью CUDA, но GPU медленнее, чем CPU. Речь идет только о медианном фильтре или я что-то не так делаю в своем коде? И почему чистое время обработки на GPU выше, чем на CPU?
Выход:
Device 0: "GeForce GT 330M" 1023Mb, sm_12 (not Fermi),
48 cores, Driver/Runtime ver.6.50/6.50
Size of the Image: 512 x 512
GPU Time Includes up&download Times: 8531/100 = 85ms
GPU Time Includes only 'apply': 8307/100 = 83ms
CPU Time: 1855/100 = 18ms
Код:
void CPUvsGPU()
{
QElapsedTimer timer;
Mat cSrc;
Mat cGray;
cuda::GpuMat gGray;
cuda::printShortCudaDeviceInfo(cuda::getDevice());
cSrc = imread("baboon.jpg");
cout << "Size of the Image: " << cSrc.size << endl;
cvtColor(cSrc, cGray, COLOR_BGR2GRAY);
gGray.upload(cGray);
Mat cOut(cGray.size(), CV_8U);
cuda::GpuMat gOut(gGray.size(), CV_8U);
Ptr <cuda::Filter> mf;
mf = cuda::createMedianFilter(CV_8UC1,9);
mf->apply(gGray, gOut);//don't measure first operation's time on GPU
timer.start();
for (int i = 0; i<100 ; i++)
{
gGray.upload(cGray);
mf->apply(gGray, gOut);
gOut.download(cOut);
}
cout << "GPU Time Includes up&download Times: " << timer.elapsed() << "/100 = " << timer.elapsed()/100 <<"ms" << endl;
timer.start();
for (int i = 0; i<100 ; i++)
mf->apply(gGray, gOut);
cout << "GPU Time Includes only 'apply': " << timer.elapsed() << "/100 = " << timer.elapsed()/100 <<"ms" << endl;
timer.start();
for (int i = 0; i<100 ; i++)
medianBlur(cGray,cOut,9);
cout << "CPU Time: " << timer.elapsed() << "/100 = " << timer.elapsed()/100 <<"ms" << endl;
}
Попробуй посмотреть на это ссылка на сайт, ваш графический процессор указан в старых графических процессорах.
Также попробуйте заглянуть в Версии GPU алгоритмов OpenCV медленнее, чем версии CPU на моем компьютере? И в Почему код Opencv GPU медленнее, чем процессор? для других проблем, чтобы принять во внимание при выполнении сравнения. Ускорение, которое вы получаете, не одинаково для всех функций. Некоторые получают небольшое улучшение, а некоторые очень замечательную скорость.
Других решений пока нет …