Я обучил линейный SVM в OpenCV 3.4.1. Теперь я хочу использовать мой пользовательский SVM с функцией OpenGV 3 HoG detectMultiScale. Старый метод настройки HoG-детектора с пользовательским вектором SVM больше не работает.
Для OpenCV 2 можно получить вектор Primal из обученного SVM OpenCV 2, например:
#include "linearsvm.h"
LinearSVM::LinearSVM() {
qDebug() << "Creating SVM and loading trained data...";
load("/home/pi/trainedSVM.xml");
qDebug() << "Done loading data...";
}
std::vector<float> LinearSVM::getPrimalForm() const
{
std::vector<float> support_vector;
int sv_count = get_support_vector_count();
const CvSVMDecisionFunc* df = getDecisionFunction();
if ( !df ) {
return support_vector;
}
const double* alphas = df[0].alpha;
double rho = df[0].rho;
int var_count = get_var_count();
support_vector.resize(var_count, 0);
for (unsigned int r = 0; r < (unsigned)sv_count; r++)
{
float myalpha = alphas[r];
const float* v = get_support_vector(r);
for (int j = 0; j < var_count; j++,v++)
{
support_vector[j] += (-myalpha) * (*v);
}
}
support_vector.push_back(rho);
return support_vector;
}
Как только первичный вектор был создан из обученных данных SVM, можно установить SVM детектора HoG следующим образом:
// Primal for of cvsvm descriptor
vector<float> primalVector = m_CvSVM.getPrimalForm();
qDebug() << "Got primal form of detection vector...";
qDebug() << "Setting SVM detector...";
// Set the SVM Detector - custom trained HoG Detector
m_HoG.setSVMDetector(primalVector);
В OpenCV 3.4.1 это больше не работает, так как CvSVM больше не существует, и большая часть SVM API изменилась.
Как мне получить основной вектор моего пользовательского SVM в OpenCV 3.4.1, который я обучал так:
// Set up SVM's parameters
cv::Ptr<cv::ml::SVM> svm = cv::ml::SVM::create();
svm->setType(cv::ml::SVM::C_SVC);
svm->setKernel(cv::ml::SVM::LINEAR);
svm->setTermCriteria(cv::TermCriteria(cv::TermCriteria::MAX_ITER, 10, 1e-6));
// Train the SVM with given parameters
cv::Ptr<cv::ml::TrainData> td = cv::ml::TrainData::create(trainingDataMat, cv::ml::ROW_SAMPLE, trainingLabelsMat);
// Or auto train
qDebug() << "Training dataset...";
QElapsedTimer trainingTimer;
trainingTimer.restart();
svm->trainAuto(td);
qDebug() << "Done training dataset in: " << (float)trainingTimer.elapsed() / 1000.0f;
Благодарю.
Оказывается, ответ находится в тесте OpenCV / examples__trag.cpp на Github.
Это выглядит так:
/// Get the SVM Detector in HoG Format
vector<float> getSVMDetector(const Ptr<SVM>& svm)
{
// get the support vectors
Mat sv = svm->getSupportVectors();
const int sv_total = sv.rows;
// get the decision function
Mat alpha, svidx;
double rho = svm->getDecisionFunction( 0, alpha, svidx );
CV_Assert( alpha.total() == 1 && svidx.total() == 1 && sv_total == 1 );
CV_Assert( (alpha.type() == CV_64F && alpha.at<double>(0) == 1.) ||
(alpha.type() == CV_32F && alpha.at<float>(0) == 1.f) );
CV_Assert( sv.type() == CV_32F );
vector< float > hog_detector( sv.cols + 1 );
memcpy( &hog_detector[0], sv.ptr(), sv.cols*sizeof( hog_detector[0] ) );
hog_detector[sv.cols] = (float)-rho;
return hog_detector;
}
Других решений пока нет …