Я работаю над обнаружением движения с нестатической камерой, используя opencv.
Я использую довольно простой метод вычитания фона и определения порогов, чтобы получить общее представление о том, что движется в примере видео. После установки порога я включаю все отдельные «пятна» белых пикселей, сохраняю их как независимые компоненты и произвольно окрашиваю их в красный, зеленый или синий. Изображение ниже показывает это для футбольного видео, где видны все такие компоненты.
Я создаю прямоугольники над этими обнаруженными компонентами и получаю это изображение:
Таким образом, я вижу проблему здесь. Я хочу сгруппировать все «похожие» и расположенные рядом компоненты в одну сущность, чтобы прямоугольники на выходном изображении изображали игрока, движущегося целиком (а не его независимые конечности). Я попытался сделать кластеризацию K-средних, но в идеале я не знал бы количество движущихся объектов, я не мог добиться никакого прогресса.
Пожалуйста, объясните мне, как я могу это сделать. Спасибо
Эта проблема может быть почти полностью решена с помощью алгоритма кластеризации dbscan. Ниже я приведу реализацию и результат изображения. Серый шарик означает выброс или шум в соответствии с dbscan. Я просто использовал коробки в качестве входных данных. Первоначально, боксовые центры использовались для функции расстояния. Однако для боксов недостаточно правильно охарактеризовать расстояние. Таким образом, функция текущего расстояния использует минимальное расстояние всех 8 углов двух полей.
#include "opencv2/opencv.hpp"using namespace cv;
#include <map>
#include <sstream>
template <class T>
inline std::string to_string (const T& t)
{
std::stringstream ss;
ss << t;
return ss.str();
}
class DbScan
{
public:
std::map<int, int> labels;
vector<Rect>& data;
int C;
double eps;
int mnpts;
double* dp;
//memoization table in case of complex dist functions
#define DP(i,j) dp[(data.size()*i)+j]
DbScan(vector<Rect>& _data,double _eps,int _mnpts):data(_data)
{
C=-1;
for(int i=0;i<data.size();i++)
{
labels[i]=-99;
}
eps=_eps;
mnpts=_mnpts;
}
void run()
{
dp = new double[data.size()*data.size()];
for(int i=0;i<data.size();i++)
{
for(int j=0;j<data.size();j++)
{
if(i==j)
DP(i,j)=0;
else
DP(i,j)=-1;
}
}
for(int i=0;i<data.size();i++)
{
if(!isVisited(i))
{
vector<int> neighbours = regionQuery(i);
if(neighbours.size()<mnpts)
{
labels[i]=-1;//noise
}else
{
C++;
expandCluster(i,neighbours);
}
}
}
delete [] dp;
}
void expandCluster(int p,vector<int> neighbours)
{
labels[p]=C;
for(int i=0;i<neighbours.size();i++)
{
if(!isVisited(neighbours[i]))
{
labels[neighbours[i]]=C;
vector<int> neighbours_p = regionQuery(neighbours[i]);
if (neighbours_p.size() >= mnpts)
{
expandCluster(neighbours[i],neighbours_p);
}
}
}
}
bool isVisited(int i)
{
return labels[i]!=-99;
}
vector<int> regionQuery(int p)
{
vector<int> res;
for(int i=0;i<data.size();i++)
{
if(distanceFunc(p,i)<=eps)
{
res.push_back(i);
}
}
return res;
}
double dist2d(Point2d a,Point2d b)
{
return sqrt(pow(a.x-b.x,2) + pow(a.y-b.y,2));
}
double distanceFunc(int ai,int bi)
{
if(DP(ai,bi)!=-1)
return DP(ai,bi);
Rect a = data[ai];
Rect b = data[bi];
/*
Point2d cena= Point2d(a.x+a.width/2,
a.y+a.height/2);
Point2d cenb = Point2d(b.x+b.width/2,
b.y+b.height/2);
double dist = sqrt(pow(cena.x-cenb.x,2) + pow(cena.y-cenb.y,2));
DP(ai,bi)=dist;
DP(bi,ai)=dist;*/
Point2d tla =Point2d(a.x,a.y);
Point2d tra =Point2d(a.x+a.width,a.y);
Point2d bla =Point2d(a.x,a.y+a.height);
Point2d bra =Point2d(a.x+a.width,a.y+a.height);
Point2d tlb =Point2d(b.x,b.y);
Point2d trb =Point2d(b.x+b.width,b.y);
Point2d blb =Point2d(b.x,b.y+b.height);
Point2d brb =Point2d(b.x+b.width,b.y+b.height);
double minDist = 9999999;
minDist = min(minDist,dist2d(tla,tlb));
minDist = min(minDist,dist2d(tla,trb));
minDist = min(minDist,dist2d(tla,blb));
minDist = min(minDist,dist2d(tla,brb));
minDist = min(minDist,dist2d(tra,tlb));
minDist = min(minDist,dist2d(tra,trb));
minDist = min(minDist,dist2d(tra,blb));
minDist = min(minDist,dist2d(tra,brb));
minDist = min(minDist,dist2d(bla,tlb));
minDist = min(minDist,dist2d(bla,trb));
minDist = min(minDist,dist2d(bla,blb));
minDist = min(minDist,dist2d(bla,brb));
minDist = min(minDist,dist2d(bra,tlb));
minDist = min(minDist,dist2d(bra,trb));
minDist = min(minDist,dist2d(bra,blb));
minDist = min(minDist,dist2d(bra,brb));
DP(ai,bi)=minDist;
DP(bi,ai)=minDist;
return DP(ai,bi);
}
vector<vector<Rect> > getGroups()
{
vector<vector<Rect> > ret;
for(int i=0;i<=C;i++)
{
ret.push_back(vector<Rect>());
for(int j=0;j<data.size();j++)
{
if(labels[j]==i)
{
ret[ret.size()-1].push_back(data[j]);
}
}
}
return ret;
}
};
cv::Scalar HSVtoRGBcvScalar(int H, int S, int V) {
int bH = H; // H component
int bS = S; // S component
int bV = V; // V component
double fH, fS, fV;
double fR, fG, fB;
const double double_TO_BYTE = 255.0f;
const double BYTE_TO_double = 1.0f / double_TO_BYTE;
// Convert from 8-bit integers to doubles
fH = (double)bH * BYTE_TO_double;
fS = (double)bS * BYTE_TO_double;
fV = (double)bV * BYTE_TO_double;
// Convert from HSV to RGB, using double ranges 0.0 to 1.0
int iI;
double fI, fF, p, q, t;
if( bS == 0 ) {
// achromatic (grey)
fR = fG = fB = fV;
}
else {
// If Hue == 1.0, then wrap it around the circle to 0.0
if (fH>= 1.0f)
fH = 0.0f;
fH *= 6.0; // sector 0 to 5
fI = floor( fH ); // integer part of h (0,1,2,3,4,5 or 6)
iI = (int) fH; // " " " "fF = fH - fI; // factorial part of h (0 to 1)
p = fV * ( 1.0f - fS );
q = fV * ( 1.0f - fS * fF );
t = fV * ( 1.0f - fS * ( 1.0f - fF ) );
switch( iI ) {
case 0:
fR = fV;
fG = t;
fB = p;
break;
case 1:
fR = q;
fG = fV;
fB = p;
break;
case 2:
fR = p;
fG = fV;
fB = t;
break;
case 3:
fR = p;
fG = q;
fB = fV;
break;
case 4:
fR = t;
fG = p;
fB = fV;
break;
default: // case 5 (or 6):
fR = fV;
fG = p;
fB = q;
break;
}
}
// Convert from doubles to 8-bit integers
int bR = (int)(fR * double_TO_BYTE);
int bG = (int)(fG * double_TO_BYTE);
int bB = (int)(fB * double_TO_BYTE);
// Clip the values to make sure it fits within the 8bits.
if (bR > 255)
bR = 255;
if (bR < 0)
bR = 0;
if (bG >255)
bG = 255;
if (bG < 0)
bG = 0;
if (bB > 255)
bB = 255;
if (bB < 0)
bB = 0;
// Set the RGB cvScalar with G B R, you can use this values as you want too..
return cv::Scalar(bB,bG,bR); // R component
}
int main(int argc,char** argv )
{
Mat im = imread("c:/data/football.png",0);
std::vector<std::vector<cv::Point> > contours;
std::vector<cv::Vec4i> hierarchy;
findContours(im.clone(), contours, hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
vector<Rect> boxes;
for(size_t i = 0; i < contours.size(); i++)
{
Rect r = boundingRect(contours[i]);
boxes.push_back(r);
}
DbScan dbscan(boxes,20,2);
dbscan.run();
//done, perform display
Mat grouped = Mat::zeros(im.size(),CV_8UC3);
vector<Scalar> colors;
RNG rng(3);
for(int i=0;i<=dbscan.C;i++)
{
colors.push_back(HSVtoRGBcvScalar(rng(255),255,255));
}
for(int i=0;i<dbscan.data.size();i++)
{
Scalar color;
if(dbscan.labels[i]==-1)
{
color=Scalar(128,128,128);
}else
{
int label=dbscan.labels[i];
color=colors[label];
}
putText(grouped,to_string(dbscan.labels[i]),dbscan.data[i].tl(), FONT_HERSHEY_COMPLEX,.5,color,1);
drawContours(grouped,contours,i,color,-1);
}
imshow("grouped",grouped);
imwrite("c:/data/grouped.jpg",grouped);
waitKey(0);
}
Я согласен с Себастьяном Шмитцем: вы, вероятно, не должны искать кластеризацию.
Не ожидайте несведущий такой метод, как k-означает создавать магию для вас. В частности, такой грубый эвристик, как k-средних, и который живет в идеализированном математическом мире, а не в грязных, реальных данных.
У вас хорошее понимание какие ты хочешь. Попробуйте ввести эту интуицию в код. В вашем случае вы, похоже, ищете подключенные компоненты.
Рассматривать понижать частоту вашего изображения в более низкое разрешение, а затем снова запустить тот же процесс! Или сразу запустите его в более низком разрешении (чтобы уменьшить артефакты сжатия и повысить производительность). Или добавление фильтры, такие как размытие.
Я ожидал бы лучших и быстрых результатов, глядя на подключенные компоненты в уменьшенном / отфильтрованном изображении.
Я не совсем уверен, действительно ли вы ищете кластеризацию (в смысле Data Mining).
Кластеризация используется для группировки похожих объектов в соответствии с функцией расстояния. В вашем случае функция расстояния будет использовать только пространственные качества. Кроме того, в кластеризации k-средних вы должны указать k, которого вы, вероятно, не знаете заранее.
Мне кажется, вы просто хотите объединить все прямоугольники, границы которых ближе друг к другу, чем какой-то заданный порог. Поэтому в качестве первой идеи попробуйте объединить все соприкасающиеся или расположенные ближе друг к другу прямоугольники, чем половина роста игрока.
Вы, вероятно, хотите включить проверку размера, чтобы минимизировать риск объединения двух игроков в одного.
Изменить: Если вы действительно хотите использовать алгоритм кластеризации, используйте тот, который оценивает количество кластеров для вас.
Я думаю, вы можете улучшить свою первоначальную попытку, используя морфологические преобразования. Взгляни на http://docs.opencv.org/master/d9/d61/tutorial_py_morphological_ops.html#gsc.tab=0. Вероятно, после этого вы можете иметь дело с закрытым набором для каждой сущности, особенно с отдельными игроками, как у вас на исходном изображении.