Тема вопроса: как быстро Kiss FFT в большой O нотации? Я не могу найти это нигде, возможно, это где-то очевидно, и я просто слепой.
Я уверен, что точка быстрого преобразования Фурье заключается в том, что это θ (n log n).
Если это что-то медленнее, то это не будет называться «быстрым» преобразованием Фурье.
(И это, вероятно, не быстрее.)
Говоря о «простых» БПФ, вот один (только степени 2):
// To get the discrete Fourier _series_, divide by the period
template<class RanInIt, class RanOutIt, class RanScratchIt>
void fft(RanInIt begin, RanInIt end,
RanOutIt outputs, RanScratchIt scratch /* at least twice as big as output */,
bool const inverse = false, size_t const stride = 1)
{
typedef std::iterator_traits<RanInIt>::value_type complex;
static long double const two_pi = 6.2831853071795864769252867665590057683943L;
size_t const n = 1 + static_cast<size_t>(std::distance(begin, end) - 1) / stride;
if ((n & (n - 1)) != 0) { throw std::logic_error("FFTs must be in powers of 2!"); }
complex const divisor(inverse ? n : 1);
if (n > 2)
{
fft(begin + 0 * stride, end, scratch + 0 * stride, outputs + 0 * stride, false, 2 * stride);
fft(begin + 1 * stride, end, scratch + 1 * stride, outputs + 1 * stride, false, 2 * stride);
size_t const n_2 = n / 2;
for (size_t i = 0; i < n_2; i++)
{
using std::polar;
complex const
t(polar(1.0L, -two_pi * i / n)),
s (*(scratch + (2 * i + 0) * stride)),
psi(*(scratch + (2 * i + 1) * stride) * t);
*(outputs + ((i + 0) * stride)) = (s + psi) / divisor;
*(outputs + ((i + n_2) * stride)) = (s - psi) / divisor;
}
}
else if (n > 0)
{
*(outputs + (0 * stride)) = (*begin + *(begin + 1 * stride)) / divisor;
*(outputs + (1 * stride)) = (*begin - *(begin + 1 * stride)) / divisor;
}
if (inverse)
{
std::swap_ranges(outputs + 1, outputs + n / 2, std::reverse_iterator<RanOutIt>(outputs + n));
}
}
template<class RanInIt>
std::vector<typename std::iterator_traits<RanInIt>::value_type>
fft(RanInIt begin, RanInIt end, bool const inverse = false)
{
size_t const n = static_cast<size_t>(std::distance(begin, end));
size_t log2ceil_n = 0;
for (size_t i = 1; i < n; i *= 2) { log2ceil_n++; }
std::vector<typename std::iterator_traits<RanInIt>::value_type>
outputs(static_cast<size_t>(1) << log2ceil_n),
scratch(2 * outputs.size());
fft(begin, end, outputs.begin(), scratch.begin(), inverse);
outputs.resize(n);
return outputs;
}
template<class Range>
std::vector<typename Range::value_type> fft(Range range, bool const inverse = false)
{ return fft(range.begin(), range.end(), inverse); }
template<class T, size_t N>
std::vector<T> fft(T const (&range)[N], bool const inverse = false)
{ return fft(&range[0], &range[N], inverse); }
Все реализации FFT имеют одинаковую сложность, потому что все они представляют собой один и тот же алгоритм
Существует много алгоритмов для вычисления дискретного преобразования Фурье, но только одним является «Быстрое преобразование Фурье (БПФ)».