Я работаю над фракталами времени побега, как мой проект 12-го класса, который будет написан на c ++, с использованием простой библиотеки graphics.h, которая устарела, но кажется достаточной.
Код для генерации множества Мандельброта, похоже, работает, и я предположил, что множества Джулии будут его вариацией. Вот код:
(Здесь fx и fy — это просто функции для преобразования фактических комплексных координат, таких как (-0.003,0.05), в фактическое значение пикселя на экране.)
int p;
x0=0, y0=0;
long double r, i;
cout<<"Enter c"<<endl;
cin>>r>>i;
for(int i= fx(-2); i<=fx(2); i++)
{
for(int j= fy(-2); j>=fy(2); j--)
{
long double x=0.0, y= 0.0,t;
x= gx(i), y= gy(j);
int k= -1;
while(( x*x + y*y <4)&& k<it-1)
{
t= x*x - y*y + r;
y= 2*x*y + i ;
x=t;
k++;
}
p= k*pd;
setcolor(COLOR(colour[p][0],colour[p][1],colour[p][2]));
putpixel(i,j,getcolor());
}
}
Но, похоже, это не так. Окно вывода показывает весь круг радиуса = 2 с цветом, соответствующим времени выхода 1 итерации.
Также, пытаясь найти решение этой проблемы, я увидел, что все алгоритмы, которые использовали другие, инициализируют начальные координаты примерно так:
x = (col - width/2)*4.0/width;
y = (row - height/2)*4.0/width;
Может кто-нибудь объяснить, что я пропускаю?
Я думаю, что основная проблема заключается в том, что переменная i
(мнимая часть) ошибочно переопределяется переменной цикла i
, Итак, линия
y= 2*x*y + i;
дает неверный результат. Эта переменная должна быть переименована, скажем, im
, Исправленная версия прилагается ниже, так как у меня нет graphics.h, я использовал экран в качестве вывода.
#include <iostream>
using namespace std;
#define WIDTH 40
#define HEIGHT 60
/* real to screen */
#define fx(x) ((int) ((x + 2)/4.0 * WIDTH))
#define fy(y) ((int) ((2 - y)/4.0 * HEIGHT))
/* screen to real */
#define gx(i) ((i)*4.0/WIDTH - 2)
#define gy(j) ((j)*4.0/HEIGHT - 2)
static void julia(int it, int pd)
{
int p;
long double re = -0.75, im = 0;
long double x0 = 0, y0 = 0;
cout << "Enter c" << endl;
cin >> re >> im;
for (int i = fx(-2.0); i <= fx(2.0); i++)
{
for (int j = fy(-2.0); j >= fy(2.0); j--)
{
long double x = gx(i), y = gy(j), t;
int k = 0;
while (x*x + y*y < 4 && k < it)
{
t = x*x - y*y + re;
y = 2*x*y + im;
x = t;
k++;
}
p = (int) (k * pd);
//setcolor(COLOR(colour[p][0],colour[p][1],colour[p][2]));
//putpixel(i,j,getcolor());
cout << p; // for ASCII output
}
cout << endl; // for ASCII output
}
}
int main(void)
{
julia(9, 1);
return 0;
}
и выход с вводом -0.75 0
дается ниже.
0000000000000000000000000000000000000000000000000000000000000
0000000000000000000001111111111111111111000000000000000000000
0000000000000000011111111111111111111111111100000000000000000
0000000000000001111111111111111111111111111111000000000000000
0000000000000111111111111122222222211111111111110000000000000
0000000000011111111111122222349432222211111111111100000000000
0000000001111111111112222233479743322222111111111111000000000
0000000011111111111222222334999994332222221111111111100000000
0000000111111111112222223345999995433222222111111111110000000
0000011111111111122222234479999999744322222211111111111100000
0000011111111111222222346899999999986432222221111111111100000
0000111111111111222223359999999999999533222221111111111110000
0001111111111112222233446999999999996443322222111111111111000
0011111111111112222233446999999999996443322222111111111111100
0011111111111122222333456899999999986543332222211111111111100
0111111111111122223334557999999999997554333222211111111111110
0111111111111122233345799999999999999975433322211111111111110
0111111111111122233457999999999999999997543322211111111111110
0111111111111122334469999999999999999999644332211111111111110
0111111111111122345999999999999999999999995432211111111111110
0111111111111122379999999999999999999999999732211111111111110
0111111111111122345999999999999999999999995432211111111111110
0111111111111122334469999999999999999999644332211111111111110
0111111111111122233457999999999999999997543322211111111111110
0111111111111122233345799999999999999975433322211111111111110
0111111111111122223334557999999999997554333222211111111111110
0011111111111122222333456899999999986543332222211111111111100
0011111111111112222233446999999999996443322222111111111111100
0001111111111112222233446999999999996443322222111111111111000
0000111111111111222223359999999999999533222221111111111110000
0000011111111111222222346899999999986432222221111111111100000
0000011111111111122222234479999999744322222211111111111100000
0000000111111111112222223345999995433222222111111111110000000
0000000011111111111222222334999994332222221111111111100000000
0000000001111111111112222233479743322222111111111111000000000
0000000000011111111111122222349432222211111111111100000000000
0000000000000111111111111122222222211111111111110000000000000
0000000000000001111111111111111111111111111111000000000000000
0000000000000000011111111111111111111111111100000000000000000
0000000000000000000001111111111111111111000000000000000000000
0000000000000000000000000000000000000000000000000000000000000
Других решений пока нет …