Фрактальное программирование. Есть ли способ оптимизировать этот код для рендеринга в реальном времени?

У меня есть код, который я хотел бы оптимизировать, если это возможно, помимо снижения максимального количества итераций. Я слышал, что есть какой-то способ обнаружения циклического сигнала, но я пытался реализовать его по-разному, либо он стал медленнее, либо мусором. Функции дисплея не отображаются, поскольку это не является причиной замедления.

#pragma once
#include <SFML/Graphics/Rect.hpp>
#include <SFML/System/Vector2.hpp>
#include <cstdint>
#include <complex>
#include <functional>
#include <vector>

using namespace std;

template<class T>
class Fractal
{
public:
Fractal(void);
~Fractal(void);

//the most important function
vector<uint32_t> evaluate(const sf::Rect<T>& area, const sf::Vector2u& subdivisions);

//set the iterative function
typedef function<void(complex<T>&)> iterative_function;
void setIterativeFunction(iterative_function func);

//set the domain function
typedef function<bool(complex<T>&)> domain_function;
void setDomainFunction(domain_function func);

//set the maximum number of escape iterations
void setMaxIterations(const uint32_t iterations);

//get maximum iterations
uint32_t getMaxIterations() const;

//a coordinates generator
//generates the coordinates to evaluate the fractal
class CoordinatesGenerator
{
public:
CoordinatesGenerator(const sf::Rect<T>& area, const sf::Vector2u& subdivisions);
~CoordinatesGenerator();

complex<T> operator()();
private:
const sf::Rect<T>& area_;
const sf::Vector2u& subdivisions_;
complex<T> coord_;
sf::Vector2u pixel_;
};
private:
//the number of escape iterations
uint32_t max_iterations_;

//the tolerance where z must change
T tolerance_;

//the formula used for the iterative system
iterative_function iter_function_;

//the formula that decides either the given complex is inside or not the domain
domain_function domain_function_;

//returns the number of iterations that z has to do to escape
uint32_t getIterations(complex<T> z) const;
};

template<class T>
Fractal<T>::Fractal()
{
//setting max iterations to 1000 by default
max_iterations_ = 1000;

//setting standard Manderbot iterative function
iter_function_ = iterative_function([](complex<T>& z)
{
z = z*z + complex<T>(1,0);
});

//setting standard Manderbot domain function
domain_function_ = domain_function([](complex<T>& z)
{
return abs(z) < 2;
});
}

// Fractal<T>::setIterativeFunction
// iterative_function func : the function on which the system iterates
// must match this signature : void(Complex<T>&)
template<class T>
void Fractal<T>::setIterativeFunction(iterative_function func)
{
iter_function_ = func;
}

// Fractal<T>::setDomainFunction
// domain_function func : the function that determines if complex is inside domain
// must match this signature : bool(Complex<T>&)
template<class T>
void Fractal<T>::setDomainFunction(domain_function func)
{
domain_function_ = func;
}

// Fractal<T>::setMaxIterations
// iterations : set the maximum iterations for escape
template<class T>
void Fractal<T>::setMaxIterations(const uint32_t iterations)
{
max_iterations_ = iterations;
}

// vector<uint32_t> Fractal<T>::evaluate(const sf::Rect<T>& area, const sf::Vector2u& subdivisions)
// area: the fractal area to evaluate
// subdivisions : the number of subdivisions to evaluate
// return a vector of the number of iterations
// the vector is construction from x = 0 ... n, y = 0 ... n
template<class T>
vector<uint32_t> Fractal<T>::evaluate(const sf::Rect<T>& area, const sf::Vector2u& subdivisions)
{
uint32_t temp;
complex<T> z(area.left,area.top);
uint32_t num_coordinates = (subdivisions.x)*(subdivisions.y);

vector<uint32_t> result;
vector<complex<T>> coordinates(num_coordinates);
CoordinatesGenerator generator(area,subdivisions);
generate(coordinates.begin(),coordinates.end(),generator);

for(auto& z: coordinates)
{
temp = getIterations(z);
result.push_back(temp);
}
return result;
}

// uint32_t Fractal<T>::getIterations(complex<T> z) const
// z : the complex number to evaluate
// return the number of iterations that z escapes domain
// using iterative and domain functions
template<class T>
uint32_t Fractal<T>::getIterations(complex<T> z) const
{
static uint32_t result;
result = 0;

while(domain_function_(z) && result < max_iterations_)
{
iter_function_(z);
result++;
}
return result;
}

// Fractal<T>::CoordinatesGenerator::CoordinatesGenerator(const sf::Rect<T>& area, const sf::Vector2u& subdivisions)
// area : the fractal area to evaluate
// subdivisions : the number of subdivisions
// used by STL algorithm
template<class T>
Fractal<T>::CoordinatesGenerator::CoordinatesGenerator(const sf::Rect<T>& area, const sf::Vector2u& subdivisions):
area_(area),subdivisions_(subdivisions)
{
coord_ = complex<T>(area_.left,area_.top);
pixel_.x = 0;
pixel_.y = 0;
}

template<class T>
Fractal<T>::CoordinatesGenerator::~CoordinatesGenerator()
{
}

// complex<T> Fractal<T>::CoordinatesGenerator::operator()()
// Generate coordinates to evaluate the fractal
// used by STL algorithm
template<class T>
complex<T> Fractal<T>::CoordinatesGenerator::operator()()
{
//getting the variation of X and Y
T deltaX = area_.width/static_cast<T>(subdivisions_.x);
T deltaY = area_.height/static_cast<T>(subdivisions_.y);

//creating the coordinate
coord_ = complex<T>(static_cast<T>(pixel_.x)*deltaX + area_.left,static_cast<T>(pixel_.y)*deltaY + area_.top);

//applying some changes to generate the next coordinate
pixel_.x++;

if(pixel_.x >= subdivisions_.x)
{
pixel_.y++;
pixel_.x = 0;
}

return coord_;
}

template<class T>
Fractal<T>::~Fractal()
{
}

template<class T>
uint32_t Fractal<T>::getMaxIterations() const
{
return max_iterations_;
}

4

Решение

Я заметил, что ваша функция возвращает

vector<uint32_t>

Пожалуйста, убедитесь, что вы используете компилятор с поддержкой C ++ 11, так как вы, вероятно, выиграете от семантики перемещения.

2

Другие решения

Других решений пока нет …

По вопросам рекламы [email protected]