Я не могу найти способ начать обработку cuFFT после предыдущего неудачного запуска.
Вот минимальный пример. Основная идея заключается в следующем: мы создаем простой процессор cuFTT, который может управлять его ресурсами (памятью устройства и планами cuFFT). Мы проверяем, что этот процессор делает БПФ. Затем мы просим создать слишком много планов, поэтому мы применяем ошибку cuFFT. Затем мы освобождаем все ресурсы и пытаемся повторить успешный запуск. Однако процессор ничего не может сделать после сбоя.
Во-первых, довольно длинная преамбула:
#include <iostream>
using std::cout;
using std::cerr;
using std::endl;
#include <vector>
using std::vector;
#include "cuda_runtime.h"#include "cufft.h"
// cuFFT API errors
static char* _cufftGetErrorEnum( cufftResult_t error )
{
switch ( error )
{
case CUFFT_SUCCESS:
return "CUFFT_SUCCESS";
case CUFFT_INVALID_PLAN:
return "cuFFT was passed an invalid plan handle";
case CUFFT_ALLOC_FAILED:
return "cuFFT failed to allocate GPU or CPU memory";
// No longer used
case CUFFT_INVALID_TYPE:
return "CUFFT_INVALID_TYPE";
case CUFFT_INVALID_VALUE:
return "User specified an invalid pointer or parameter";
case CUFFT_INTERNAL_ERROR:
return "Driver or internal cuFFT library error";
case CUFFT_EXEC_FAILED:
return "Failed to execute an FFT on the GPU";
case CUFFT_SETUP_FAILED:
return "The cuFFT library failed to initialize";
case CUFFT_INVALID_SIZE:
return "User specified an invalid transform size";
// No longer used
case CUFFT_UNALIGNED_DATA:
return "CUFFT_UNALIGNED_DATA";
case CUFFT_INCOMPLETE_PARAMETER_LIST:
return "Missing parameters in call";
case CUFFT_INVALID_DEVICE:
return "Execution of a plan was on different GPU than plan creation";
case CUFFT_PARSE_ERROR:
return "Internal plan database error";
case CUFFT_NO_WORKSPACE:
return "No workspace has been provided prior to plan execution";
case CUFFT_NOT_IMPLEMENTED:
return "CUFFT_NOT_IMPLEMENTED";
case CUFFT_LICENSE_ERROR:
return "CUFFT_LICENSE_ERROR";
}
return "<unknown>";
}
// check cuda runtime calls
bool cudaCheck( cudaError_t err )
{
if ( err != cudaSuccess )
{
cudaDeviceSynchronize();
cerr << cudaGetErrorString( cudaGetLastError() ) << endl;
return false;
}
return true;
}
// check cuFFT calls
bool cufftCheck( cufftResult_t err )
{
if ( err != CUFFT_SUCCESS )
{
cerr << _cufftGetErrorEnum( err ) << endl;
return false;
}
return true;
}
Далее мы определяем простой процессор cuFFT, который может управлять его ресурсами (памятью устройства и планами cuFFT).
class CCuFFT_Processor
{
vector<cufftHandle> _plans;
cufftComplex *_data;
size_t _data_bytes;
// Release resouces
bool ReleaseAll();
bool ReleaseMemory();
bool ReleasePlans();
public:
CCuFFT_Processor() :
_data( NULL ),
_data_bytes( 0 )
{
_plans.reserve( 32 );
_plans.clear();
}
~CCuFFT_Processor()
{
ReleaseAll();
}
bool Run();
bool Alloc( size_t data_len, size_t batch_len );
};
Вот как мы собираемся выпустить ресурсы:
bool CCuFFT_Processor::ReleaseMemory()
{
bool chk = true;
if ( _data != NULL )
{
chk = cudaCheck( cudaFree( _data ) );
_data = NULL;
_data_bytes = 0;
}
return chk;
}
bool CCuFFT_Processor::ReleasePlans()
{
bool chk = true;
for ( auto & p : _plans )
chk = chk && cufftCheck( cufftDestroy( p ) );
_plans.clear();
return chk;
}
bool CCuFFT_Processor::ReleaseAll()
{
bool chk = true;
chk = chk && cudaCheck( cudaDeviceSynchronize() );
chk = chk && ReleaseMemory();
chk = chk && ReleasePlans();
chk = chk && cudaCheck( cudaDeviceReset() );
return chk;
}
Вот реализация основного функционала:
bool CCuFFT_Processor::Alloc( size_t data_len, size_t batch_len )
{
bool chk = true;
size_t bytes = sizeof( cufftComplex ) * data_len * batch_len;
// CUDA resources
if ( _data_bytes < bytes )
chk = chk && ReleaseMemory();
if ( _data == NULL )
{
chk = chk && cudaCheck( cudaMalloc( (void **)&_data, bytes ) );
_data_bytes = bytes;
}
// cuFFT resources
chk = chk && ReleasePlans();
for ( size_t b = 1; chk && ( b <= batch_len ); b *= 2 )
{
cufftHandle new_plan;
chk = cufftCheck(
cufftPlan1d( &new_plan, int(data_len), CUFFT_C2C, int(b) ) );
if ( chk )
_plans.push_back( new_plan );
}
if ( !chk )
ReleaseAll();
return chk;
}
bool CCuFFT_Processor::Run()
{
bool chk = true;
chk = cufftCheck(
cufftExecC2C( *_plans.rbegin(), _data, _data, CUFFT_FORWARD ) );
if ( !chk )
ReleaseAll();
chk = chk && cudaCheck( cudaDeviceSynchronize() );
return chk;
}
Наконец, программа
int main()
{
size_t batch = 1 << 5;
size_t length = 1 << 21;
CCuFFT_Processor proc;
// Normal run
if ( proc.Alloc( length, batch ) )
proc.Run();
// Run with error
length *= 4;
if ( proc.Alloc( length, batch ) )
proc.Run();
// Normal run : check recovery
length /= 4;
if ( proc.Alloc( length, batch ) )
proc.Run();
return EXIT_SUCCESS;
}
Если я использую маленький length = 1 << 18
, то никаких ошибок не возникает. Тем не менее, для большого length = 1 << 21
появляются две ошибки:
cuFFT failed to allocate GPU or CPU memory
Failed to execute an FFT on the GPU
Первая ошибка — ожидаемая, мы сделали это намеренно. Но второй нет. Хотя устройство было перезагружено и новые ресурсы были успешно распределены, cuFFT не удалось выполнить FFT.
Я использую GTX 970. Я пробовал все комбинации: cuda 6.5, cuda 7.5, 32-битная платформа, 64-битная платформа и т. Д., Но безуспешно.
Задача ещё не решена.
Других решений пока нет …