Я испытываю некоторое патологическое поведение с числовым интегратором, который я запрограммировал в C ++ и CUDA для работы на моем GPU. Мой интегратор использует фиксированный размер шага в данный момент, и в тот момент, когда я устанавливаю количество точек (чисел) для интегрирования до 65 (размер шага увеличивается до 1/65, а ширина двумерного массива, в котором я сохраняю рассчитанные данные должны быть 65), мой интегратор не работает, и кажется, что функция где-то возвращает ноль. Есть ли что-то не так с двумерными массивами, размер которых больше 64-х двойных?
Я попытался реализовать макрос, который написал Talonmies Каков канонический способ проверки на наличие ошибок с помощью API времени выполнения CUDA? Очевидно, что-то идет не так в моем ядре и копировании данных, рассчитанных ядром, обратно на хост. Msgstr «GPU assert: неверный аргумент.» Я не уверен, как интерпретировать эти ошибки или куда идти дальше.
Я подозреваю, что это связано либо с шириной 2D-массива больше 64, либо с шагом, а также с тем, как я храню вещи в 2D-массиве на устройстве. Правильно ли заполнен следующий код в столбце 2D-массива?
#include <cuda.h>
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <stdio.h>
#include <iostream>
#include <iomanip> //display 2 decimal places
using namespace std;
__global__ void rkf5(double*, double*, double*, double*, double*, double*, double*, double*, double*, double*, int*, int*, size_t, double*, double*, double*);
__global__ void calcK(double*, double*, double*);
__global__ void k1(double*, double*, double*);
__global__ void k2(double*, double*, double*);
__global__ void k3(double*, double*, double*);
__global__ void k4(double*, double*, double*);
__global__ void k5(double*, double*, double*);
__global__ void k6(double*, double*, double*);
__global__ void arrAdd(double*, double*, double*);
__global__ void arrMult(double*, double*, double*);
__global__ void arrInit(double*, double);
__device__ void setup(double , double*, double*, double*, double*, int*);
__device__ double flux(int, double*) ;
__global__ void storeConcs(double*, size_t, double*, int);
__global__ void takeFourthOrderStep(double*, double*, double*, double*, double*, double*, double*);
__global__ void takeFifthOrderStep(double*, double*, double*, double*, double*, double*, double*);
//Error checking that I don't understand yet.
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
//Main program.
int main(int argc, char** argv)
{
//std::cout << std::fixed; //display 2 decimal places
//std::cout << std::setprecision(16); //display 2 decimal places
const int maxlength = 1; //Number of discrete concentrations we are tracking.
double concs[maxlength]; //Meant to store the current concentrations
double temp[maxlength]; //Used as a bin to store products of Butcher's tableau and k values.
double tempsum[maxlength]; //Used as a bin to store cumulative sum of tableau and k values
double k1s[maxlength];
double k2s[maxlength];
double k3s[maxlength];
double k4s[maxlength];
double k5s[maxlength];
double k6s[maxlength];
const int numpoints = 64;
double to = 0;
double tf = .5;
//double dt = static_cast<double>(.5)/static_cast<double>(64);
double dt = (tf-to)/static_cast<double>(numpoints);
double mo = 1;
double concStorage[maxlength][numpoints]; //Stores concs vs. time
//Initialize all the arrays on the host to ensure arrays of 0's are sent to the device.
//Also, here is where we can seed the system.
std::cout<<dt;
std::cout<<"\n";
concs[0]=mo;
std::cout<<concs[0];
std::cout<<" ";
for (int i=0; i<maxlength; i++)
{
for (int j=0; j<numpoints; j++)
concStorage[i][j]=0;
concs[i]=0;
temp[i]=0;
tempsum[i]=0;
k1s[i]=0;
k2s[i]=0;
k3s[i]=0;
k4s[i]=0;
k5s[i]=0;
k6s[i]=0;
std::cout<<concs[i];
std::cout<<" ";
}
concs[0]=mo;
std::cout<<"\n";
//Define all the pointers to device array memory addresses. These contain the on-GPU
//addresses of all the data we're generating/using.
double *d_concs;
double *d_temp;
double *d_tempsum;
double *d_k1s;
double *d_k2s;
double *d_k3s;
double *d_k4s;
double *d_k5s;
double *d_k6s;
double *d_dt;
int *d_maxlength;
int *d_numpoints;
double *d_to;
double *d_tf;
double *d_concStorage;
//Calculate all the sizes of the arrays in order to allocate the proper amount of memory on the GPU.
size_t size_concs = sizeof(concs);
size_t size_temp = sizeof(temp);
size_t size_tempsum = sizeof(tempsum);
size_t size_ks = sizeof(k1s);
size_t size_maxlength = sizeof(maxlength);
size_t size_numpoints = sizeof(numpoints);
size_t size_dt = sizeof(dt);
size_t size_to = sizeof(to);
size_t size_tf = sizeof(tf);
size_t h_pitch = numpoints*sizeof(double);
size_t d_pitch;
//Calculate the "pitch" of the 2D array. The pitch is basically the length of a 2D array's row. IT's larger
//than the actual row full of data due to hadware issues. We thusly will use the pitch instead of the data
//size to traverse the array.
gpuErrchk(cudaMallocPitch( (void**)&d_concStorage, &d_pitch, maxlength * sizeof(double), numpoints));
//Allocate memory on the GPU for all the arrrays we're going to use in the integrator.
cudaMalloc((void**)&d_concs, size_concs);
cudaMalloc((void**)&d_temp, size_temp);
cudaMalloc((void**)&d_tempsum, size_tempsum);
cudaMalloc((void**)&d_k1s, size_ks);
cudaMalloc((void**)&d_k2s, size_ks);
cudaMalloc((void**)&d_k3s, size_ks);
cudaMalloc((void**)&d_k4s, size_ks);
cudaMalloc((void**)&d_k5s, size_ks);
cudaMalloc((void**)&d_k6s, size_ks);
cudaMalloc((void**)&d_maxlength, size_maxlength);
cudaMalloc((void**)&d_numpoints, size_numpoints);
cudaMalloc((void**)&d_dt, size_dt);
cudaMalloc((void**)&d_to, size_to);
cudaMalloc((void**)&d_tf, size_tf);
//Copy all initial values of arrays to GPU.
cudaMemcpy2D(d_concStorage, d_pitch, concStorage, h_pitch, numpoints*sizeof(double), maxlength, cudaMemcpyHostToDevice);
cudaMemcpy(d_concs, &concs, size_concs, cudaMemcpyHostToDevice);
cudaMemcpy(d_temp, &temp, size_temp, cudaMemcpyHostToDevice);
cudaMemcpy(d_tempsum, &tempsum, size_tempsum, cudaMemcpyHostToDevice);
cudaMemcpy(d_k1s, &k1s, size_ks, cudaMemcpyHostToDevice);
cudaMemcpy(d_k2s, &k2s, size_ks, cudaMemcpyHostToDevice);
cudaMemcpy(d_k3s, &k3s, size_ks, cudaMemcpyHostToDevice);
cudaMemcpy(d_k4s, &k4s, size_ks, cudaMemcpyHostToDevice);
cudaMemcpy(d_k5s, &k5s, size_ks, cudaMemcpyHostToDevice);
cudaMemcpy(d_k6s, &k6s, size_ks, cudaMemcpyHostToDevice);
cudaMemcpy(d_maxlength, &maxlength, size_maxlength, cudaMemcpyHostToDevice);
cudaMemcpy(d_numpoints, &numpoints, size_numpoints, cudaMemcpyHostToDevice);
cudaMemcpy(d_dt, &dt, size_dt, cudaMemcpyHostToDevice);
cudaMemcpy(d_to, &to, size_to, cudaMemcpyHostToDevice);
cudaMemcpy(d_tf, &tf, size_tf, cudaMemcpyHostToDevice);
//Run the integrator.
rkf5<<<1,1>>>(d_concs, d_concStorage, d_temp, d_tempsum, d_k1s, d_k2s, d_k3s, d_k4s, d_k5s, d_k6s, d_maxlength, d_numpoints, d_pitch, d_dt, d_to, d_tf);
//gpuErrchk( cudaPeekAtLastError() );
//gpuErrchk( cudaDeviceSynchronize() );
cudaDeviceSynchronize();
//Copy concentrations from GPU to Host. Almost defunct now that transferring the 2D array works.
cudaMemcpy(concs, d_concs, size_concs, cudaMemcpyDeviceToHost);
//Copy 2D array of concentrations vs. time from GPU to Host.
gpuErrchk( cudaMemcpy2D(concStorage, h_pitch, d_concStorage, d_pitch, numpoints*sizeof(double), maxlength, cudaMemcpyDeviceToHost) );
//Print concentrations after the integrator kernel runs. Used to test that data was transferring to and from GPU correctly.
std::cout << "\n";
for (int i=0; i<maxlength; i++)
{
std::cout<<concs[i];
std::cout<<" ";
}
//Print out the concStorage array after the kernel runs. Used to test that the 2D array transferred correctly from host to GPU and back.
std::cout << "\n";
for (int i=0; i<maxlength; i++)
{
for(int j=0; j<numpoints; j++)
{
std::cout<<concStorage[i][j];
std::cout<<" ";
}
std::cout << "\n";
}
std::cout << "\n";
cudaDeviceReset(); //Clean up all memory.
return 0;
}
//Main kernel. This is mean to be run as a master thread that calls all the other functions and thusly "runs" the integrator.
__global__ void rkf5(double* concs, double* concStorage, double* temp, double* tempsum, double* k1s, double* k2s, double* k3s, double* k4s, double* k5s, double* k6s, int* maxlength, int* numpoints, size_t pitch, double* dt, double* to, double* tf)
{
/*
axy variables represent the coefficients in the Butcher's tableau where x represents the order of the step and the y value corresponds to the ky value
the coefficient gets multiplied by. Have to cast them all as doubles, or the ratios evaluate as integers.
e.g. a21 -> a21 * k1
e.g. a31 -> a31 * k1 + a32 * k2
*/
double a21 = static_cast<double>(.25);
double a31 = static_cast<double>(3)/static_cast<double>(32);
double a32 = static_cast<double>(9)/static_cast<double>(32);
double a41 = static_cast<double>(1932)/static_cast<double>(2197);
double a42 = static_cast<double>(-7200)/static_cast<double>(2197);
double a43 = static_cast<double>(7296)/static_cast<double>(2197);
double a51 = static_cast<double>(439)/static_cast<double>(216);
double a52 = static_cast<double>(-8);
double a53 = static_cast<double>(3680)/static_cast<double>(513);
double a54 = static_cast<double>(-845)/static_cast<double>(4104);
double a61 = static_cast<double>(-8)/static_cast<double>(27);
double a62 = static_cast<double>(2);
double a63 = static_cast<double>(-3544)/static_cast<double>(2565);
double a64 = static_cast<double>(1859)/static_cast<double>(4104);
double a65 = static_cast<double>(-11)/static_cast<double>(40);
//for loop that integrates over the specified number of points. Actually, might have to make it a do-while loop for adaptive step sizes
for(int k = 0; k < *numpoints; k++)
{
calcK<<< 1, *maxlength >>>(concs, k1s, dt); //k1 = dt * flux (concs)
cudaDeviceSynchronize(); //Sync here because kernel continues onto next line before k1 finished
setup(a21, temp, tempsum, k1s, concs, maxlength); //tempsum = a21*k1
arrAdd<<< 1, *maxlength >>>(concs, temp, tempsum); //tempsum = concs + a21*k1
cudaDeviceSynchronize();
calcK<<< 1, *maxlength >>>(tempsum, k2s, dt); //k2 = dt * flux (concs + a21*k1)
cudaDeviceSynchronize();
setup(a31, temp, tempsum, k1s, concs, maxlength); //tempsum = a31*k1
setup(a32, temp, tempsum, k2s, concs, maxlength); //tempsum = a31*k1 + a32*k2
arrAdd<<< 1, *maxlength >>>(concs, temp, tempsum); //tempsum = concs + a31*k1 + a32*k2
cudaDeviceSynchronize();
calcK<<< 1, *maxlength >>>(tempsum, k3s, dt); //k3 = dt * flux (concs + a31*k1 + a32*k2)
cudaDeviceSynchronize();
setup(a41, temp, tempsum, k1s, concs, maxlength); //tempsum = a41*k1
setup(a42, temp, tempsum, k2s, concs, maxlength); //tempsum = a41*k1 + a42*k2
setup(a43, temp, tempsum, k3s, concs, maxlength); //tempsum = a41*k1 + a42*k2 + a43*k3
arrAdd<<< 1, *maxlength >>>(concs, temp, tempsum); //tempsum = concs + a41*k1 + a42*k2 + a43*k3
cudaDeviceSynchronize();
calcK<<< 1, *maxlength >>>(tempsum, k4s, dt); //k4 = dt * flux (concs + a41*k1 + a42*k2 + a43*k3)
cudaDeviceSynchronize();
setup(a51, temp, tempsum, k1s, concs, maxlength); //tempsum = a51*k1
setup(a52, temp, tempsum, k2s, concs, maxlength); //tempsum = a51*k1 + a52*k2
setup(a53, temp, tempsum, k3s, concs, maxlength); //tempsum = a51*k1 + a52*k2 + a53*k3
setup(a54, temp, tempsum, k4s, concs, maxlength); //tempsum = a51*k1 + a52*k2 + a53*k3 + a54*k4
arrAdd<<< 1, *maxlength >>>(concs, temp, tempsum); //tempsum = concs + a51*k1 + a52*k2 + a53*k3 + a54*k4
cudaDeviceSynchronize();
calcK<<< 1, *maxlength >>>(tempsum, k5s, dt); //k5 = dt * flux (concs + a51*k1 + a52*k2 + a53*k3 + a54*k4)
cudaDeviceSynchronize();
setup(a61, temp, tempsum, k1s, concs, maxlength); //tempsum = a61*k1
setup(a62, temp, tempsum, k2s, concs, maxlength); //tempsum = a61*k1 + a62*k2
setup(a63, temp, tempsum, k3s, concs, maxlength); //tempsum = a61*k1 + a62*k2 + a63*k3
setup(a64, temp, tempsum, k4s, concs, maxlength); //tempsum = a61*k1 + a62*k2 + a63*k3 + a64*k4
setup(a65, temp, tempsum, k4s, concs, maxlength); //tempsum = a61*k1 + a62*k2 + a63*k3 + a64*k4 + a65*k5
arrAdd<<< 1, *maxlength >>>(concs, temp, tempsum); //tempsum = concs + a61*k1 + a62*k2 + a63*k3 + a64*k4 + a65*k5
cudaDeviceSynchronize();
calcK<<< 1, *maxlength >>>(tempsum, k6s, dt); //k6 = dt * flux (concs + a61*k1 + a62*k2 + a63*k3 + a64*k4 + a65*k5)
cudaDeviceSynchronize();
//At this point, temp and tempsum are maxlength dimension arrays that are able to be used for other things.
/*
//All this is is a way of printing all my k values in a 2D array. No bearing on actual program.
for (int i = 0; i < *maxlength; i++)
{
switch (j)
{
case 0: concs[i]=k1s[i];
break;
case 1: concs[i]=k2s[i];
break;
case 2: concs[i]=k3s[i];
break;
case 3: concs[i]=k4s[i];
break;
case 4: concs[i]=k5s[i];
break;
}
}
*/
//calcStepSize
takeFifthOrderStep<<< 1, *maxlength >>>(concs, k1s, k2s, k3s, k4s, k5s, k6s);
cudaDeviceSynchronize();
storeConcs<<< 1, *maxlength >>>(concStorage, pitch, k1s, k);
cudaDeviceSynchronize();
}
}
//calcStepSize will take in an error tolerance, the current concentrations and the k values and calculate the resulting step size according to the following equation
//e[n+1]=y4[n+1] - y5[n+1]
//__global__ void calcStepSize(double *y5, double* y4)//takeFourthOrderStep is going to overwrite the old temp array with the new array of concentrations that result from a 4th order step. This kernel is meant to be launched
// with as many threads as there are discrete concentrations to be tracked.
__global__ void takeFourthOrderStep(double* concs, double* k1s, double* k2s,double* k3s, double* k4s, double* k5s)
{
double b41 = static_cast<double>(25)/static_cast<double>(216);
double b42 = static_cast<double>(0);
double b43 = static_cast<double>(1408)/static_cast<double>(2565);
double b44 = static_cast<double>(2197)/static_cast<double>(4104);
double b45 = static_cast<double>(-1)/static_cast<double>(5);
int idx = blockIdx.x * blockDim.x + threadIdx.x;
concs[idx] = concs[idx] + b41 * k1s[idx] + b42 * k2s[idx] + b43 * k3s[idx] + b44 * k4s[idx] + b45 * k5s[idx];
}
//takeFifthOrderStep is going to overwrite the old array of concentrations with the new array of concentrations. As of now, this will be the 5th order step. Another function can be d
//defined that will take a fourth order step if that is interesting for any reason. This kernel is meant to be launched with as many threads as there are discrete concentrations
//to be tracked.
//Store b values in register? Constants?
__global__ void takeFifthOrderStep(double* concs, double* k1s, double* k2s,double* k3s, double* k4s, double* k5s, double* k6s)
{
double b51 = static_cast<double>(16)/static_cast<double>(135);
double b52 = static_cast<double>(0);
double b53 = static_cast<double>(6656)/static_cast<double>(12825);
double b54 = static_cast<double>(28561)/static_cast<double>(56430);
double b55 = static_cast<double>(-9)/static_cast<double>(50);
double b56 = static_cast<double>(2)/static_cast<double>(55);
int idx = blockIdx.x * blockDim.x + threadIdx.x;
concs[idx] = concs[idx] + b51 * k1s[idx] + b52 * k2s[idx] + b53 * k3s[idx] + b54 * k4s[idx] + b55 * k5s[idx] + b56 * k6s[idx];
}
//storeConcs takes the current array of concentrations and stores it in the cId'th column of the 2D concStorage array
//pitch = memory size of a row
__global__ void storeConcs(double* cS, size_t pitch, double* concs, int cId)
{
int tIdx = threadIdx.x;
//cS is basically the memory address of the first element of the flattened (1D) 2D array.
double* row = (double*)((char*)cS + tIdx * pitch);
row[cId] = concs[tIdx];
}
//Perhaps I can optimize by using shared memory to hold conc values.
__global__ void calcK(double* concs, double* ks, double* dt)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
ks[idx]=(*dt)*flux(idx, concs);
}
//Adds two arrays (a and b) element by element and stores the result in array c.
__global__ void arrAdd(double* a, double* b, double* c)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
c[idx]=a[idx]+b[idx];
}
//Multiplies two arrays (a and b) element by element and stores the result in array c.
__global__ void arrMult(double* a, double* b, double* c)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
c[idx]=a[idx]*b[idx];
}
//Initializes an array a to double value b.
__global__ void arrInit(double* a, double b)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
a[idx]=b;
}
//Placeholder function for the flux calculation. It will take the size of the oligomer and current concentrations as inputs.
__device__ double flux(int r, double *concs)
{
return -concs[r];
}
//This function multiplies a tableau value by the corresponding k array and adds the result to tempsum. Used to
//add all the a*k terms.
__device__ void setup(double tableauValue, double *temp, double *tempsum, double *ks, double *concs, int *maxlength)
{
//Sets tempsum to tabVal * k
arrInit<<< 1, *maxlength >>>(temp, tableauValue); //Set [temp] to tableau value
cudaDeviceSynchronize();
arrMult<<< 1, *maxlength >>>(ks, temp, temp); //Multiply tableau value by appropriate [k]
cudaDeviceSynchronize();
arrAdd<<< 1, *maxlength >>>(tempsum, temp, tempsum); //Move tabVal*k to [tempsum]
cudaDeviceSynchronize();
}
/*
__device__ double knowles_flux(int r, double *conc, double *params)
{
const double nc = params[0];
const double ka = params[1];
//const float kb = params[2];
//const float kp = params[3];
const double km = params[4];
const double kn = params[5];
//const float n2 = params[6];
//const float kn2 = params[7];
const int maxlength = params[8];const int r = blockIdx.x*blockDim.x + threadIdx.x;
double frag_term = 0;
double flux = 0;
if (r == (maxlength-1))
{
flux = -km*(r)*conc[r]+2*ka*conc[r-1]*conc[0];
}
else if (r > (nc-1))
{
for (int s = r+1; s < maxlength; s++)
{
frag_term += conc[s];
}
//double frag_term = thrust::reduce(conc, conc);
flux = -km*(r)*conc[r] + 2*km*frag_term - 2*ka*conc[r]*conc[0] + 2*ka*conc[r-1]*conc[0];
}
else if (r == (nc-1))
{
for (int s = r+1; s < maxlength; s++)
{
frag_term += conc[s];
}
//double frag_term = thrust::reduce(conc, conc);
flux = kn*pow(conc[0],nc) + 2*km*frag_term - 2*ka*conc[r]*conc[0];
}
else if (r < (nc-1))
{
flux[r] = 0;
}
}
*/
/*
Encountered Errors :
1. nvlink - undefined reference : there's a mismatch between function protoypes and function declaration, possibly the number of arguments.
"nvlink : error : Undefined reference to '_Z2k1PdS_' in 'x64/Debug/RKF5 Prototype 2.cu.obj'" - fixed by making sure func def had same parameters as proto
2.1>nvlink : error : Undefined reference to '_Z2k1PdS_' in 'x64/Debug/RKF5 Prototype 2.cu.obj'
1>nvlink : error : Undefined reference to '_Z2k2PdS_' in 'x64/Debug/RKF5 Prototype 2.cu.obj'
1>nvlink : error : Undefined reference to '_Z2k3PdPiS_S_S_S_S_' in 'x64/Debug/RKF5 Prototype 2.cu.obj'
1>nvlink : error : Undefined reference to '_Z2k4PdPiS_S_S_S_S_S_' in 'x64/Debug/RKF5 Prototype 2.cu.obj'
1>nvlink : error : Undefined reference to '_Z2k5PdPiS_S_S_S_S_S_S_' in 'x64/Debug/RKF5 Prototype 2.cu.obj'
This is caused by there being references defined in the prototype that don't exist in the actual function definition.
*/
Прежде всего, вы не реализовали правильную проверку ошибок cuda. Пожалуйста, перечитайте, изучите, делайте все, что вам нужно, чтобы понять публикацию по талонмам. Вам нужно поставить макрос проверки ошибок после каждый вызов API cuda, так что это означает, что после каждый cudaMalloc
, cudaMemcpy
и т.д. вы должны разместить эту строку:
gpuErrchk( cudaPeekAtLastError() );
в качестве альтернативы, вы можете просто обернуть каждый вызов в макросе проверки ошибок:
gpuErrchk(cudaMemcpy(concs, d_concs, size_concs, cudaMemcpyDeviceToHost));
Если вы этого не сделаете, да, сообщения об ошибках будут сбивать с толку, потому что они часто применяются к другим (предыдущим) строкам кода, которые выдавали ошибку.
Как только вы выполните полную проверку на наличие ошибок, вы обнаружите, что недопустимый аргумент возникает из этой строки кода:
cudaMemcpy2D(d_concStorage, d_pitch, concStorage, h_pitch, numpoints*sizeof(double), maxlength, cudaMemcpyHostToDevice);
Чтобы понять почему, нам нужно сравнить его с соответствующей операцией malloc, которая создала d_concStorage
, что это за строка:
gpuErrchk(cudaMallocPitch( (void**)&d_concStorage, &d_pitch, maxlength * sizeof(double), numpoints));
Обратите внимание, что в ваших исходных определениях переменных numpoints
это ширина параметр. Однако в cudaMallocPitch
выше вы проходите numpoints
в качестве последнего параметра, который является height
параметр. Обратитесь к API CUDA документация.
Чтобы сделать эти вызовы гармоничными друг с другом, нам нужны соответствующие параметры высоты и ширины. Я думаю, что правильное, что нужно сделать, это исправить cudaMallocPitch
линия, чтобы она соответствовала cudaMemcpy2D
операция, вот так:
gpuErrchk(cudaMallocPitch( (void**)&d_concStorage, &d_pitch, numpoints * sizeof(double), maxlength));
Когда я сделаю это изменение, я могу установить numpoints
до 65 и компилировать и запускать ваш код без каких-либо ошибок API.
Других решений пока нет …