Я пытаюсь реализовать алгоритм обнаружения краев Canny с нуля с помощью OpenCV. Я сталкиваюсь с проблемой реализации шага не максимального подавления, который помогает уменьшить края.
Моя логика состоит в том, чтобы сначала вычислить вектор градиента интенсивности, затем сгруппировать его в направлении 0,45,90,135 градусов и затем попытаться найти локальные максимумы. Чтобы найти этот локальный максимум, нужно убедиться, что текущий пиксель больше, чем последующий и предыдущий пиксель в том же направлении. Если нет, я присваиваю значение ноль этому пикселю. Используя эту логику, я все еще не в состоянии утончить края. Я чувствую ошибку, когда я вычисляю вектор градиента интенсивности для каждого пикселя.
Вот мой код
#include <iostream>
#include <bits/stdc++.h>
#include "opencv2/core/core.hpp"#include "opencv2/highgui/highgui.hpp"#include "opencv2/opencv.hpp"#include "opencv2/imgproc/imgproc.hpp"#include <opencv2/objdetect/objdetect.hpp>
#include <math.h>
using namespace cv;
using namespace std;
int main()
{
// Reading image
Mat img = imread("1.jpg");
// Displaying image
//imshow("Original Image",img);
//waitKey(0);
// Converting to grayscale
Mat img_gray,image_gray;
cvtColor(img,image_gray,CV_RGB2GRAY);
GaussianBlur( image_gray, img_gray, Size(15,15), 3, 3);// Displaying grayscale image
imshow("Original Image",img_gray);
waitKey(0);int cols = img_gray.cols;
int rows = img_gray.rows;
// Creating sobel operator in x direction
int sobel_x[3][3] = {-1,0,1,-2,0,2,-1,0,1};
// Creating sobel operator in y direction
int sobel_y[3][3] = {1,2,1,0,0,0,-1,-2,-1};int radius = 1;
// Handle border issues
Mat _src;
copyMakeBorder(img_gray, _src, radius, radius, radius, radius, BORDER_REFLECT101);
// Create output matrix
Mat gradient_x = img_gray.clone();
Mat gradient_y = img_gray.clone();
Mat gradient_f = img_gray.clone();
Mat gradient_mag = img_gray.clone();
// Conrrelation loop in x direction
// Iterate on image
for (int r = radius; r < _src.rows - radius; ++r)
{
for (int c = radius; c < _src.cols - radius; ++c)
{
int s = 0;
// Iterate on kernel
for (int i = -radius; i <= radius; ++i)
{
for (int j = -radius; j <= radius; ++j)
{
s += _src.at<uchar>(r + i, c + j) * sobel_x[i + radius][j + radius];
}
}
gradient_x.at<uchar>(r - radius, c - radius) = s/8;
/*if(s>200)
gradient.at<uchar>(r - radius, c - radius) = 255;
else
gradient.at<uchar>(r - radius, c - radius) = 0;
*/
}
}
// Conrrelation loop in y direction
// Iterate on image
for (int r = radius; r < _src.rows - radius; ++r)
{
for (int c = radius; c < _src.cols - radius; ++c)
{
int s = 0;
// Iterate on kernel
for (int i = -radius; i <= radius; ++i)
{
for (int j = -radius; j <= radius; ++j)
{
s += _src.at<uchar>(r + i, c + j) * sobel_y[i + radius][j + radius];
}
}
gradient_y.at<uchar>(r - radius, c - radius) = s/8;
/*if(s>200)
gradient.at<uchar>(r - radius, c - radius) = 255;
else
gradient.at<uchar>(r - radius, c - radius) = 0;
*/
}
}
///cout<<endl<<"max:"<<max;
//cout<<img_gray.rows;
//cout<<endl<<_src.rows;
cout<<endl<<gradient_x.rows;
cout<<endl<<gradient_y.rows;
cout<<endl<<gradient_f.rows<<gradient_f.cols;//Calculating gradient magnitude
for(int i=0; i<gradient_mag.rows; i++)
{
for(int j=0; j<gradient_mag.cols; j++)
{
gradient_mag.at<uchar>(i,j) = sqrt( pow(gradient_x.at<uchar>(i,j),2) + pow(gradient_y.at<uchar>(i,j),2) );
if(gradient_mag.at<uchar>(i,j) >250)
gradient_f.at<uchar>(i,j) = 255;
else
gradient_f.at<uchar>(i,j) = 0;
}
}/*
imshow("grad x",gradient_x);
waitKey(0);
imshow("grad y",gradient_y);
waitKey(0);
*/
imshow("grad magnitude",gradient_f);
waitKey(0);
int max=0;// Performing Non-Maximum Surpression
float theta; // Calculate intensity gradient vector theta=atan2(Gy,Gx);
Mat nonMaxSupp= Mat(gradient_mag.rows-2, gradient_mag.cols-2, CV_8UC1); //CV_8UC1 is 8-bit single channel image i.e grayscale
for(int i=1; i<gradient_x.rows-1; i++)
{
for(int j=1; j<gradient_x.cols-1; j++)
{
//if(gradient_x.at<uchar>(i,j) ==0) //Arctan Fix
// theta = 90;
//else
theta = atan2(gradient_y.at<uchar>(i,j),gradient_x.at<uchar>(i,j))*(180/3.14);
//theta = atan(gradient_y.at<uchar>(i,j)/gradient_x.at<uchar>(i,j))*(180/3.14);
//cout<<theta<<endl;
//if(theta>max)
// max=theta;
nonMaxSupp.at<uchar>(i-1, j-1) = gradient_mag.at<uchar>(i,j);
// For horizontal edge
if(((-22.5 < theta) && (theta <= 22.5)) || ((157.5 < theta) && (theta <= -157.5)))
{
if ((gradient_mag.at<uchar>(i,j) < gradient_mag.at<uchar>(i,j+1)) || (gradient_mag.at<uchar>(i,j) < gradient_mag.at<uchar>(i,j-1)))
nonMaxSupp.at<uchar>(i-1, j-1) = 0;
}
//For vertical edge
if (((-112.5 < theta) && (theta <= -67.5)) || ((67.5 < theta) && (theta <= 112.5)))
{
if ((gradient_mag.at<uchar>(i,j) < gradient_mag.at<uchar>(i+1,j)) || (gradient_mag.at<uchar>(i,j) < gradient_mag.at<uchar>(i-1,j)))
nonMaxSupp.at<uchar>(i-1, j-1) = 0;
}
// For 135 degree or -45 degree edge
if (((-67.5 < theta) && (theta <= -22.5)) || ((112.5 < theta) && (theta <= 157.5)))
{
if ((gradient_mag.at<uchar>(i,j) < gradient_mag.at<uchar>(i-1,j+1)) || (gradient_mag.at<uchar>(i,j) < gradient_mag.at<uchar>(i+1,j-1)))
nonMaxSupp.at<uchar>(i-1, j-1) = 0;
}
// For 45 Degree Edge
if (((-157.5 < theta) && (theta <= -112.5)) || ((22.5 < theta) && (theta <= 67.5)))
{
if ((gradient_mag.at<uchar>(i,j) < gradient_mag.at<uchar>(i+1,j+1)) || (gradient_mag.at<uchar>(i,j) < gradient_mag.at<uchar>(i-1,j-1)))
nonMaxSupp.at<uchar>(i-1, j-1) = 0;
}
}
}
//cout<<endl<<"max"<<max;
imshow("Non-Maximum Surpression",nonMaxSupp);
waitKey(0);
return 0;
}
Задача ещё не решена.
Других решений пока нет …